928 resultados para High-temperature Stress


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current context of environmental change, ocean acidification is predicted to affect the cellular processes, physiology and behaviour of all marine organisms, impacting survival, growth and reproduction. In relation to thermal tolerance limits, the effects of elevated pCO2 could be expected to be more pronounced at the upper limits of the thermal tolerance window. Our study focused on Crepidula fornicata, an invasive gastropod which colonized shallow waters around European coasts during the 20th century. We investigated the effects of 10 weeks' exposure to current (380 µatm) and elevated (550, 750, 1,000 µatm) pCO2 on this engineer species using an acute temperature increase (1 °C/12 h) as the test. Respiration rates were measured on both males (small individuals) and females (large individuals). Mortality increased suddenly from 34 °C, particularly in females. Respiration rate in C. fornicata increased linearly with temperature between 18 and 34 °C, but no differences were detected between the different pCO2 conditions either in the regressions between respiration rate and temperature or in Q10 values. In the same way, condition indices were similar in all the pCO2 treatments at the end of the experiment, but decreased from the beginning of the experiment. This species was highly resistant to acute exposure to high temperature regardless of pCO2 levels, even though food was limited during the experiment. Crepidula fornicata appears to have either developed resistance mechanisms or a strong phenotypic plasticity to deal with fluctuations of physicochemical parameters in its habitat. This suggests that invasive species may be more resistant to future environmental changes than its native competitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification (OA) and warming related to the anthropogenic increase in atmospheric CO2 have been shown to have detrimental effects on several marine organisms, especially those with calcium carbonate structures such as corals. In this study, we evaluate the response of two Mediterranean shallow-water azooxanthellate corals to the projected pH and seawater temperature (ST) scenarios for the end of this century. The colonial coral Astroides calycularis and the solitary Leptopsammia pruvoti were grown in aquaria over a year under two fixed pH conditions, control (8.05 pHT units) and low (7.72 pHT units), and simulating two annual ST cycles, natural and high (+3 °C). The organic matter (OM), lipid and protein content of the tissue and the skeletal microdensity of A. calycularis were not affected by the stress conditions (low pH, high ST), but the species exhibited a mean 25 % decrease in calcification rate at high-ST conditions at the end of the warm period and a mean 10 % increase in skeletal porosity under the acidified treatment after a full year cycle. Conversely, an absence of effects on calcification and skeletal microdensity of L. pruvoti exposed to low-pH and high-ST treatments contrasted with a significant decrease in the OM, lipid and protein content of the tissue at high-ST conditions and a 13 % mean increase in the skeletal porosity under low-pH conditions following a full year of exposure. This species-specific response suggests that different internal self-regulation strategies for energy reallocation may allow certain shallow-water azooxanthellate corals to cope more successfully than others with global environmental changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the temperature on the compressive stress–strain behavior of Al/SiC nanoscale multilayers was studied by means of micropillar compression tests at 23 °C and 100 °C. The multilayers (composed of alternating layers of 60 nm in thickness of nanocrystalline Al and amorphous SiC) showed a very large hardening rate at 23 °C, which led to a flow stress of 3.1 ± 0.2 GPa at 8% strain. However, the flow stress (and the hardening rate) was reduced by 50% at 100 °C. Plastic deformation of the Al layers was the dominant deformation mechanism at both temperatures, but the Al layers were extruded out of the micropillar at 100 °C, while Al plastic flow was constrained by the SiC elastic layers at 23 °C. Finite element simulations of the micropillar compression test indicated the role played by different factors (flow stress of Al, interface strength and friction coefficient) on the mechanical behavior and were able to rationalize the differences in the stress–strain curves between 23 °C and 100 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los transistores de alta movilidad electrónica basados en GaN han sido objeto de una extensa investigación ya que tanto el GaN como sus aleaciones presentan unas excelentes propiedades eléctricas (alta movilidad, elevada concentración de portadores y campo eléctrico crítico alto). Aunque recientemente se han incluido en algunas aplicaciones comerciales, su expansión en el mercado está condicionada a la mejora de varios asuntos relacionados con su rendimiento y habilidad. Durante esta tesis se han abordado algunos de estos aspectos relevantes; por ejemplo, la fabricación de enhancement mode HEMTs, su funcionamiento a alta temperatura, el auto calentamiento y el atrapamiento de carga. Los HEMTs normalmente apagado o enhancement mode han atraído la atención de la comunidad científica dedicada al desarrollo de circuitos amplificadores y conmutadores de potencia, ya que su utilización disminuiría significativamente el consumo de potencia; además de requerir solamente una tensión de alimentación negativa, y reducir la complejidad del circuito y su coste. Durante esta tesis se han evaluado varias técnicas utilizadas para la fabricación de estos dispositivos: el ataque húmedo para conseguir el gate-recess en heterostructuras de InAl(Ga)N/GaN; y tratamientos basados en flúor (plasma CF4 e implantación de F) de la zona debajo de la puerta. Se han llevado a cabo ataques húmedos en heteroestructuras de InAl(Ga)N crecidas sobre sustratos de Si, SiC y zafiro. El ataque completo de la barrera se consiguió únicamente en las muestras con sustrato de Si. Por lo tanto, se puede deducir que la velocidad de ataque depende de la densidad de dislocaciones presentes en la estructura, ya que el Si presenta un peor ajuste del parámetro de red con el GaN. En relación a los tratamientos basados en flúor, se ha comprobado que es necesario realizar un recocido térmico después de la fabricación de la puerta para recuperar la heteroestructura de los daños causados durante dichos tratamientos. Además, el estudio de la evolución de la tensión umbral con el tiempo de recocido ha demostrado que en los HEMTs tratados con plasma ésta tiende a valores más negativos al aumentar el tiempo de recocido. Por el contrario, la tensión umbral de los HEMTs implantados se desplaza hacia valores más positivos, lo cual se atribuye a la introducción de iones de flúor a niveles más profundos de la heterostructura. Los transistores fabricados con plasma presentaron mejor funcionamiento en DC a temperatura ambiente que los implantados. Su estudio a alta temperatura ha revelado una reducción del funcionamiento de todos los dispositivos con la temperatura. Los valores iniciales de corriente de drenador y de transconductancia medidos a temperatura ambiente se recuperaron después del ciclo térmico, por lo que se deduce que dichos efectos térmicos son reversibles. Se han estudiado varios aspectos relacionados con el funcionamiento de los HEMTs a diferentes temperaturas. En primer lugar, se han evaluado las prestaciones de dispositivos de AlGaN/GaN sobre sustrato de Si con diferentes caps: GaN, in situ SiN e in situ SiN/GaN, desde 25 K hasta 550 K. Los transistores con in situ SiN presentaron los valores más altos de corriente drenador, transconductancia, y los valores más bajos de resistencia-ON, así como las mejores características en corte. Además, se ha confirmado que dichos dispositivos presentan gran robustez frente al estrés térmico. En segundo lugar, se ha estudiado el funcionamiento de transistores de InAlN/GaN con diferentes diseños y geometrías. Dichos dispositivos presentaron una reducción casi lineal de los parámetros en DC en el rango de temperaturas de 25°C hasta 225°C. Esto se debe principalmente a la dependencia térmica de la movilidad electrónica, y también a la reducción de la drift velocity con la temperatura. Además, los transistores con mayores longitudes de puerta mostraron una mayor reducción de su funcionamiento, lo cual se atribuye a que la drift velocity disminuye más considerablemente con la temperatura cuando el campo eléctrico es pequeño. De manera similar, al aumentar la distancia entre la puerta y el drenador, el funcionamiento del HEMT presentó una mayor reducción con la temperatura. Por lo tanto, se puede deducir que la degradación del funcionamiento de los HEMTs causada por el aumento de la temperatura depende tanto de la longitud de la puerta como de la distancia entre la puerta y el drenador. Por otra parte, la alta densidad de potencia generada en la región activa de estos transistores conlleva el auto calentamiento de los mismos por efecto Joule, lo cual puede degradar su funcionamiento y Habilidad. Durante esta tesis se ha desarrollado un simple método para la determinación de la temperatura del canal basado en medidas eléctricas. La aplicación de dicha técnica junto con la realización de simulaciones electrotérmicas han posibilitado el estudio de varios aspectos relacionados con el autocalentamiento. Por ejemplo, se han evaluado sus efectos en dispositivos sobre Si, SiC, y zafiro. Los transistores sobre SiC han mostrado menores efectos gracias a la mayor conductividad térmica del SiC, lo cual confirma el papel clave que desempeña el sustrato en el autocalentamiento. Se ha observado que la geometría del dispositivo tiene cierta influencia en dichos efectos, destacando que la distribución del calor generado en la zona del canal depende de la distancia entre la puerta y el drenador. Además, se ha demostrado que la temperatura ambiente tiene un considerable impacto en el autocalentamiento, lo que se atribuye principalmente a la dependencia térmica de la conductividad térmica de las capas y sustrato que forman la heterostructura. Por último, se han realizado numerosas medidas en pulsado para estudiar el atrapamiento de carga en HEMTs sobre sustratos de SiC con barreras de AlGaN y de InAlN. Los resultados obtenidos en los transistores con barrera de AlGaN han presentado una disminución de la corriente de drenador y de la transconductancia sin mostrar un cambio en la tensión umbral. Por lo tanto, se puede deducir que la posible localización de las trampas es la región de acceso entre la puerta y el drenador. Por el contrario, la reducción de la corriente de drenador observada en los dispositivos con barrera de InAlN llevaba asociado un cambio significativo en la tensión umbral, lo que implica la existencia de trampas situadas en la zona debajo de la puerta. Además, el significativo aumento del valor de la resistencia-ON y la degradación de la transconductancia revelan la presencia de trampas en la zona de acceso entre la puerta y el drenador. La evaluación de los efectos del atrapamiento de carga en dispositivos con diferentes geometrías ha demostrado que dichos efectos son menos notables en aquellos transistores con mayor longitud de puerta o mayor distancia entre puerta y drenador. Esta dependencia con la geometría se puede explicar considerando que la longitud y densidad de trampas de la puerta virtual son independientes de las dimensiones del dispositivo. Finalmente se puede deducir que para conseguir el diseño óptimo durante la fase de diseño no sólo hay que tener en cuenta la aplicación final sino también la influencia que tiene la geometría en los diferentes aspectos estudiados (funcionamiento a alta temperatura, autocalentamiento, y atrapamiento de carga). ABSTRACT GaN-based high electron mobility transistors have been under extensive research due to the excellent electrical properties of GaN and its related alloys (high carrier concentration, high mobility, and high critical electric field). Although these devices have been recently included in commercial applications, some performance and reliability issues need to be addressed for their expansion in the market. Some of these relevant aspects have been studied during this thesis; for instance, the fabrication of enhancement mode HEMTs, the device performance at high temperature, the self-heating and the charge trapping. Enhancement mode HEMTs have become more attractive mainly because their use leads to a significant reduction of the power consumption during the stand-by state. Moreover, they enable the fabrication of simpler power amplifier circuits and high-power switches because they allow the elimination of negativepolarity voltage supply, reducing significantly the circuit complexity and system cost. In this thesis, different techniques for the fabrication of these devices have been assessed: wet-etching for achieving the gate-recess in InAl(Ga)N/GaN devices and two different fluorine-based treatments (CF4 plasma and F implantation). Regarding the wet-etching, experiments have been carried out in InAl(Ga)N/GaN grown on different substrates: Si, sapphire, and SiC. The total recess of the barrier was achieved after 3 min of etching in devices grown on Si substrate. This suggests that the etch rate can critically depend on the dislocations present in the structure, since the Si exhibits the highest mismatch to GaN. Concerning the fluorine-based treatments, a post-gate thermal annealing was required to recover the damages caused to the structure during the fluorine-treatments. The study of the threshold voltage as a function of this annealing time has revealed that in the case of the plasma-treated devices it become more negative with the time increase. On the contrary, the threshold voltage of implanted HEMTs showed a positive shift when the annealing time was increased, which is attributed to the deep F implantation profile. Plasma-treated HEMTs have exhibited better DC performance at room temperature than the implanted devices. Their study at high temperature has revealed that their performance decreases with temperature. The initial performance measured at room temperature was recovered after the thermal cycle regardless of the fluorine treatment; therefore, the thermal effects were reversible. Thermal issues related to the device performance at different temperature have been addressed. Firstly, AlGaN/GaN HEMTs grown on Si substrate with different cap layers: GaN, in situ SiN, or in situ SiN/GaN, have been assessed from 25 K to 550 K. In situ SiN cap layer has been demonstrated to improve the device performance since HEMTs with this cap layer have exhibited the highest drain current and transconductance values, the lowest on-resistance, as well as the best off-state characteristics. Moreover, the evaluation of thermal stress impact on the device performance has confirmed the robustness of devices with in situ cap. Secondly, the high temperature performance of InAlN/GaN HEMTs with different layouts and geometries have been assessed. The devices under study have exhibited an almost linear reduction of the main DC parameters operating in a temperature range from room temperature to 225°C. This was mainly due to the thermal dependence of the electron mobility, and secondly to the drift velocity decrease with temperature. Moreover, HEMTs with large gate length values have exhibited a great reduction of the device performance. This was attributed to the greater decrease of the drift velocity for low electric fields. Similarly, the increase of the gate-to-drain distance led to a greater reduction of drain current and transconductance values. Therefore, this thermal performance degradation has been found to be dependent on both the gate length and the gate-to-drain distance. It was observed that the very high power density in the active region of these transistors leads to Joule self-heating, resulting in an increase of the device temperature, which can degrade the device performance and reliability. A simple electrical method have been developed during this work to determine the channel temperature. Furthermore, the application of this technique together with the performance of electro-thermal simulations have enabled the evaluation of different aspects related to the self-heating. For instance, the influence of the substrate have been confirmed by the study of devices grown on Si, SiC, and Sapphire. HEMTs grown on SiC substrate have been confirmed to exhibit the lowest self-heating effects thanks to its highest thermal conductivity. In addition to this, the distribution of the generated heat in the channel has been demonstrated to be dependent on the gate-to-drain distance. Besides the substrate and the geometry of the device, the ambient temperature has also been found to be relevant for the self-heating effects, mainly due to the temperature-dependent thermal conductivity of the layers and the substrate. Trapping effects have been evaluated by means of pulsed measurements in AlGaN and InAIN barrier devices. AlGaN barrier HEMTs have exhibited a de crease in drain current and transconductance without measurable threshold voltage change, suggesting the location of the traps in the gate-to-drain access region. On the contrary, InAIN barrier devices have showed a drain current associated with a positive shift of threshold voltage, which indicated that the traps were possibly located under the gate region. Moreover, a significant increase of the ON-resistance as well as a transconductance reduction were observed, revealing the presence of traps on the gate-drain access region. On the other hand, the assessment of devices with different geometries have demonstrated that the trapping effects are more noticeable in devices with either short gate length or the gate-to-drain distance. This can be attributed to the fact that the length and the trap density of the virtual gate are independent on the device geometry. Finally, it can be deduced that besides the final application requirements, the influence of the device geometry on the performance at high temperature, on the self-heating, as well as on the trapping effects need to be taken into account during the device design stage to achieve the optimal layout.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to contribute to a further understanding of the fundamentals of crystallographic slip and grain boundary sliding in the γ-TiAl Ti–45Al–2Nb–2Mn (at%)–0.8 vol%TiB2 intermetallic alloy, by means of in situ high-temperature tensile testing combined with electron backscatter diffraction (EBSD). Several microstructures, containing different fractions and sizes of lamellar colonies and equiaxed γ-grains, were fabricated by either centrifugal casting or powder metallurgy, followed by heat treatment at 1300 °C and furnace cooling. in situ tensile and tensile-creep experiments were performed in a scanning electron microscope (SEM) at temperatures ranging from 580 °C to 700 °C. EBSD was carried out in selected regions before and after straining. Our results suggest that, during constant strain rate tests, true twin γ/γ interfaces are the weakest barriers to dislocations and, thus, that the relevant length scale might be influenced by the distance between non-true twin boundaries. Under creep conditions both grain/colony boundary sliding (G/CBS) and crystallographic slip are observed to contribute to deformation. The incidence of boundary sliding is particularly high in γ grains of duplex microstructures. The slip activity during creep deformation in different microstructures was evaluated by trace analysis. Special emphasis was placed in distinguishing the compliance of different slip events with the Schmid law with respect to the applied stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Net photosynthesis (Pn) is inhibited by moderate heat stress. To elucidate the mechanism of inhibition, we examined the effects of temperature on gas exchange and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation in cotton and tobacco leaves and compared the responses to those of the isolated enzymes. Depending on the CO2 concentration, Pn decreased when temperatures exceeded 35–40°C. This response was inconsistent with the response predicted from the properties of fully activated Rubisco. Rubisco deactivated in leaves when temperature was increased and also in response to high CO2 or low O2. The decrease in Rubisco activation occurred when leaf temperatures exceeded 35°C, whereas the activities of isolated activase and Rubisco were highest at 42°C and >50°C, respectively. In the absence of activase, isolated Rubisco deactivated under catalytic conditions and the rate of deactivation increased with temperature but not with CO2. The ability of activase to maintain or promote Rubisco activation in vitro also decreased with temperature but was not affected by CO2. Increasing the activase/Rubisco ratio reduced Rubisco deactivation at higher temperatures. The results indicate that, as temperature increases, the rate of Rubisco deactivation exceeds the capacity of activase to promote activation. The decrease in Rubisco activation that occurred in leaves at high CO2 was not caused by a faster rate of deactivation, but by reduced activase activity possibly in response to unfavorable ATP/ADP ratios. When adjustments were made for changes in activation state, the kinetic properties of Rubisco predicted the response of Pn at high temperature and CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bt transgenic cotton has not shown the same level of resistance to bollworm in China, as in other major Bt cotton growing areas of the world. The objective of this study was to investigate the effects of high temperature on the CryIA insecticidal protein content and nitrogen metabolism, in the leaf of Bt transgenic cotton. The study was undertaken on two transgenic cotton cultivars, one conventional (Xinyang 822) and the other a hybrid (Kumian No. 1), during the 2001 and 2002 growing seasons at the Yangzhou University Farm, Yangzhou, China. In the 2001 study, potted cotton plants were exposed to 37 C for 24 h under glasshouse conditions at three growth stages peak square, peak flowering and peak boll developing periods. Based on the 2001 results, in 2002 the same two cultivars were exposed to the same temperature for 48 h at two growth stages-peak flowering and boll developing periods. The results of the study indicated that the insecticidal protein content of the leaf was not significantly affected by the stress during the square and flowering periods. However, exposure to high temperature for 24h during the boll period reduced the CryIA protein content by approximately 51% in the cultivar Kumian No 1, and 30% in Xinyang 822 in the 2001 study, and by approximately 73 and 63% for 48 h with the same cultivars, respectively, in the 2002 study. Glutamic-pyruvic transaminase (GPT) activity, total free amino acid and soluble protein content, and the activity of protease in the leaf, showed relatively little change in response to high temperature in the flowering period. However, exposure to high temperature in the boll period resulted in the following changes - a reduction of GPT activity, a sharp increase in free amino acid content, a significant decrease in soluble protein content, and significant increases in the activity of protease. The results suggest that high temperature may result in the degradation of soluble protein in the leaf, with a resulting decline in the level of the toxin CryIA. It is believed that this may be the cause of the reduced efficacy of Bt cotton in growing conditions in China, where temperatures during the boll period often reach 36-40° C. © 2004 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Earth's upper mantle, mainly composed of olivine, is seismically anisotropic. Seismic anisotropy attenuation has been observed at 220km depth. Karato et al. (1992) attributed this attenuation to a transition between two deformation mechanisms, from dislocation creep above 220km to diffusion creep below 220km, induced by a change in water content. Couvy (2005) and Mainprice et al. (2005) predicted a change in Lattice Preferred Orientation induced by pressure, which comes from a change of slip system, from [100] slip to [001] slip, and is responsible for the seismic anisotropy attenuation. Raterron et al. (2007) ran single crystal deformation experiments under anhydrous conditions and observed that the slip system transition occurs around 8GPa, which corresponds to a depth of 260Km. Experiments were done to quantify the effects of water on olivine single crystals deformed using D-DIA press and synchrotron beam. Deformations were carried out in uniaxial compression along [110]c, [011]c, and [101]c, crystallographic directions, at pressure ranging from 4 to 8GPa and temperature between 1373 and 1473K. Talc sleeves about the annulus of the single crystals were used as source of water in the assembly. Stress and specimen strain rates were calculated by in-situ X-ray diffraction and time resolved imaging, respectively. By direct comparison of single crystals strain rates, we observed that [110]c deforms faster than [011]c below 5GPa. However above 6GPa [011]c deforms faster than [110]c. This revealed that [100](010) is the dominant slip system below 5GPa, and above 6GPa [001](010) becomes dominant. According to our results, the slip system transition, which is induced by pressure, occurs at 6GPa. Water influences the pressure where the switch over occurs, by lowering the transition pressure. The pressure effect on the slip systems activity has been quantified and the hydrolytic weakening has also been estimated for both orientations. Data also shows that temperature affects the slip system activity. The regional variation of the depth for the seismic anisotropy attenuation, which would depend on local hydroxyl content and temperature variations and explains the seismic anisotropy attenuation occurring at about 220Km depth in the mantle, where the pressure is about 6GPa. Deformation of MgO single crystal oriented [100], [110] and [111] were also performed. The results predict a change in the slip system activity at 23GPa, again induced by pressure. This explains the seismic anisotropy observed in the lower mantle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystal structure of compositionally homogeneous, nanocrystalline ZrO2-CeO2 solutions was investigated by X-ray powder diffraction as a function of temperature for compositions between 50 and 65 mol % CeO2 center dot ZrO2-50 and 60 mol % CeO2 solid solutions, which exhibit the t'-form of the tetragonal phase at room temperature, transform into the cubic phase in two steps: t'-to-t '' followed by t ''-to-cubic. But the ZrO2-65 mol % CeO2, which exhibits the t ''-form, transforms directly to the cubic phase. The results suggest that t'-to-t '' transition is of first order, but t ''-to-cubic seems to be of second order. (C) 2008 International Centre for Diffraction Data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the one-and two-loop contribution to the free energy in QED with Lorentz symmetry breaking introduced via constant CPT-even Lorentz-breaking parameters at the high temperature limit. We find the impact of the Lorentz-violating term for the free energy and carry out a numerical estimation for the Lorentz-breaking parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal expansion anisotropy of the V(5)Si(3) and T(2)-phase of the V-Si-B system were determined by high-temperature X-ray diffraction from 298 to 1273 K. Alloys with nominal compositions V(62.5)Si(37.5) (V5Si3 phase) and V(63)Si(12)B(25) (T(2)-phase) were prepared from high-purity materials through arc-melting followed by heat-treatment at 1873 K by 24 h, under argon atmosphere. The V(5)Si(3) phase exhibits thermal expansion anisotropy equals to 1.3, with thermal expansion coefficients along the a and c-axis equal to 9.3 x 10(-6) K(-1) and 11.7 x 10(-6) K(-1), respectively. Similarly, the thermal expansion anisotropy value of the T(2)-phase is 0.9 with thermal expansion coefficients equal to 8.8 x 10(-6) K(-1) and 8.3 x 10(-6) K(-1) along the, a and c-axis respectively. Compared to other isostructural silicides of the 5:3 type and the Ti(5)Si(3) phase, the V(5)Si(3) phase presents lower thermal expansion anisotropy. The T(2)-phase present in the V-Si-B system exhibits low thermal expansion anisotropy, as the T(2)-phase of the Mo-Si-B, Nb-Si-B and W-Si-B systems. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to reduce energy costs, high-temperature insulation porous refractory ceramics have been subjected to increasing demands. Among the techniques used to produce these materials (such as the addition of foaming agents and organic compounds), the pore generation via phase transformation presents key aspects, such as easy processing and the absence of toxic volatiles. In this study, this technique was applied to produce porous ceramics by decomposing an aluminum magnesium hydro-carbonate known as hydrotalcite (Mg(6)Al(2)(CO(3))(OH)(16)center dot 4H(2)O). It was found out that by using this complex compound, a large fraction of pores can be generated and kept at high temperatures (above 1300 degrees C) due to the in situ formation of spinel-like phases (MgAl(2)O(4)). (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of temperature on the fast fracture behavior of aluminum nitride with 5 wt% Y(2)O(3) ceramic were investigated. Four-point flexural strength and fracture toughness were measured in air at several temperatures (30-1,300 A degrees C). The flexural strength gradually decreased with the increase of temperature up to 1,000 A degrees C due to the change in the fracture mode from transgranular to intergranular, and then became almost constant up to 1,300 A degrees C. Two main flaw types as fracture origin were identified: small surface flaw and large pores. The volume fraction of the large pores was only 0.01%; however, they limited the strength on about 50% of the specimens. The fracture toughness decreased slightly up to 800 A degrees C controlled by the elastic modulus change, and then decreased significantly at 1,000 A degrees C due to the decrease in the grain-boundary toughness. Above 1,000 A degrees C, the fracture toughness increased significantly, and at 1,300 A degrees C, its value was close to that measured at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the sensory stability of ultra-high temperature (UHT) milk subjected to different heat treatments and stored at room temperature in white high density polyethylene bottles (HDPE) pigmented with titanium dioxide. Two lots of 300 units each were processed, respectively, at 135 and 141 degrees C/10 s using indirect heating and subsequently aseptically filled in an ISO class 7 clean room. These experimental lots were evaluated for appearance, aroma, flavor, and overall appreciation and compared to samples of commercial UHT milk purchased from local commercial stores. The time-temperature combinations investigated did not affect either the acceptability or the shelf life of the milk. Despite the limited light barrier properties of HDPE bottles, the product contained in the package tested exhibited good stability, with a shelf life ranging from 4 to 11 wk. Within this time period, the acceptability of the experimental lots was similar to that of the commercial products. The results achieved in this study contribute to turn the low-cost UHT system investigated into a technically viable option for small-size dairy processing plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement of organic carbon in soils has traditionally used dichromate oxidation procedures including the Wakley and Black and the Heanes methods. The measurement of carbon in soils by high temperature combustion is now widely used providing a rapid automated procedure without the use of toxic chemicals. This procedure however measures total carbon thus requiring some means of correction for soil samples containing carbonate and charcoal forms of carbon. This paper examines the effects of known additions of charcoal to a range of soil types on the results obtained by the Walkley and Black, Heanes and combustion methods. The results show, that while the charcoal carbon does not react under Walkley and Black conditions, some proportion does so with the Heanes method. A comparison of six Australian Soil and Plant Analysis Council reference soil samples by the three methods showed good agreement between the Heanes method, the combustion method and only slightly lower recoveries by the Walkley and Black procedure. Carbonate carbon will cause an overestimation of soil organic carbon by the combustion method thus requiring a separate determination of carbonate carbon to be applied as a correction. This work shows that a suitable acid pre-treatment of alkaline soils in the sample boats followed by a drying step eliminates the carbonate carbon prior to combustion and the need for an additional measurement. The measurement of carbon in soils by high temperature combustion in an oxygen atmosphere has been shown to be a rapid and reliable method capable of producing results in good agreement with one of the established dichromate oxidation procedures.