759 resultados para High intensity physical training
Resumo:
Trata de una conferencia invitada que ganó premio a la mejor comunicación científica.
Resumo:
The aim was to investigate whether the addition of supervised high intensity progressive resistance training to a moderate weight loss program (RT+WLoss) could maintain bone mineral density (BMD) and lean mass compared to moderate weight loss (WLoss) alone in older overweight adults with type 2 diabetes. We also investigated whether any benefits derived from a supervised RT program could be sustained through an additional home-based program. This was a 12-month trial in which 36 sedentary, overweight adults aged 60 to 80 years with type 2 diabetes were randomized to either a supervised gymnasium-based RT+WLoss or WLoss program for 6 months (phase 1). Thereafter, all participants completed an additional 6-month home-based training without further dietary modification (phase 2). Total body and regional BMD and bone mineral content (BMC), fat mass (FM) and lean mass (LM) were assessed by DXA every 6 months. Diet, muscle strength (1-RM) and serum total testosterone, estradiol, SHBG, insulin and IGF-1 were measured every 3 months. No between group differences were detected for changes in any of the hormonal parameters at any measurement point. In phase 1, after 6 months of gymnasium-based training, weight and FM decreased similarly in both groups (P < 0.01), but LM tended to increase in the RT+WLoss (n=16) relative to the WLoss (n = 13) group [net difference (95% CI), 1.8% (0.2, 3.5), P < 0.05]. Total body BMD and BMC remained unchanged in the RT+WLoss group, but decreased by 0.9 and 1.5%, respectively, in the WLoss group (interaction, P < 0.05). Similar, though non-significant, changes were detected at the femoral neck and lumbar spine (L2-L4). In phase 2, after a further 6 months of home-based training, weight and FM increased significantly in both the RT+WLoss (n = 14) and WLoss (n = 12) group, but there were no significant changes in LM or total body or regional BMD or BMC in either group from 6 to 12 months. These results indicate that in older, overweight adults with type 2 diabetes, dietary modification should be combined with progressive resistance training to optimize the effects on body composition without having a negative effect on bone health.
Resumo:
This study investigated the effects of high-intensity interval training (HIIT) vs. work-matched moderate-intensity continuous exercise (MOD) on metabolism and counterregulatory stress hormones. In a randomized and counterbalanced order, 10 well-trained male cyclists and triathletes completed a HIIT session [81.6 ± 3.7% maximum oxygen consumption (V̇o2 max); 72.0 ± 3.2% peak power output; 792 ± 95 kJ] and a MOD session (66.7 ± 3.5% V̇o2 max; 48.5 ± 3.1% peak power output; 797 ± 95 kJ). Blood samples were collected before, immediately after, and 1 and 2 h postexercise. Carbohydrate oxidation was higher (P = 0.037; 20%), whereas fat oxidation was lower (P = 0.037; −47%) during HIIT vs. MOD. Immediately after exercise, plasma glucose (P = 0.024; 20%) and lactate (P < 0.01; 5.4×) were higher in HIIT vs. MOD, whereas total serum free fatty acid concentration was not significantly different (P = 0.33). Targeted gas chromatography-mass spectromtery metabolomics analysis identified and quantified 49 metabolites in plasma, among which 11 changed after both HIIT and MOD, 13 changed only after HIIT, and 5 changed only after MOD. Notable changes included substantial increases in tricarboxylic acid intermediates and monounsaturated fatty acids after HIIT and marked decreases in amino acids during recovery from both trials. Plasma adrenocorticotrophic hormone (P = 0.019), cortisol (P < 0.01), and growth hormone (P < 0.01) were all higher immediately after HIIT. Plasma norepinephrine (P = 0.11) and interleukin-6 (P = 0.20) immediately after exercise were not significantly different between trials. Plasma insulin decreased during recovery from both HIIT and MOD (P < 0.01). These data indicate distinct differences in specific metabolites and counterregulatory hormones following HIIT vs. MOD and highlight the value of targeted metabolomic analysis to provide more detailed insights into the metabolic demands of exercise.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Estudos têm demonstrado que o exercício físico regular melhora as condições do diabetes, facilitando a captação periférica da glicose e o metabolismo de glicogênio, proteínas, etc. Por outro lado, pouco se conhece sobre os efeitos do exercício intenso em diabéticos, principalmente com relação ao sistema imune desses organismos. O presente estudo teve como objetivo verificar os efeitos de um treinamento físico de alta intensidade sobre a contagem total e diferencial de leucócitos em ratos diabéticos. Ratos machos jovens Wistar foram distribuídos em quatro grupos: controle sedentário (CS), controle treinado (CT), diabético sedentário (DS) e diabético treinado (DT). O diabetes foi induzido por aloxana (35mg/kg de peso corporal). Durante seis semanas os animais dos grupos CT e DT realizaram um protocolo de treinamento físico, que consistiu na realização de quatro séries de 10 saltos (intercaladas por um minuto de intervalo) em piscina, com o nível da água correspondendo a 150% do comprimento corporal e sobrecarga equivalente a 50% da massa corporal dos animais. Ao final do período experimental, amostras de sangue foram coletadas para a contagem total e diferencial dos leucócitos. Os resultados foram avaliados estatisticamente por ANOVA com um nível de significância de 5%. A glicemia foi aumentada entre os diabéticos e a insulinemia diminuída. Não foram observadas diferenças significativas na contagem diferencial dos linfócitos, neutrófilos, eosinófilos e contagem total de leucócitos entre os grupos estudados. Houve aumento dos monócitos entre os treinados (CS = 10,0 ± 4,5, CT* = 25,4 ± 7,9, DS = 19,75 ± 7,4, DT* = 25,8 ± 4,4%). O peso relativo do timo foi reduzido pelo treinamento e pelo diabetes (CS = 125,0 ± 37,7, CT* = 74,6 ± 8,2, DS* = 47,5 ± 12,2, DT* = 40,1 ± 16,9mg/100g). Esses resultados permitem concluir que o treinamento físico de alta intensidade não alterou o estado geral do diabetes, mas aumentou os monócitos, o que pode representar um efeito positivo sobre a resposta imunológica desses animais.
Resumo:
Nowadays the regular practice of sports is known as a way to obtain a better quality of life. On the other hand, the media has been distorting this idea, determining the ideal body as the hypertrophy phenotype. It is well known that the genetic factor does not allow all individuals to have this body shape. Besides the fact that, the anxiety of these people in obtain quick results, as one of the globalization’s consequence, make use of anabolic steroid to achieve this goal. However the bodybuilding or the strength muscle gain, make anabolic steroids users abuse and in major cases the users do not know the side effects. In front of these considerations, the present study evaluated the effects of the treatment with anabolic steroids and/or high intensity physical training on the corporal developing, the reproductive organs, bone parameters (strength and bone deformation) and seminal parameters as well the social behavior (aggressiveness). In other to obtain the experimental group, male Wistar rats were used, with 75 days old. The groups were divided into: Vehicle Non-Training (NV), Anabolic Steroid-Non-Training (NA), Vehicle-Training (TV) and Anabolic Steroid-Training (TA). These rats received i.m. injections, twice a week, of anabolic steroid (5mg/kg per animal of nandrolona decanoate) or vehicle (the same volume of peanut oil per animal) and the group TV and TA were submitted to physical training three times per week, during eight weeks. The body mass, wet weight of reproductive organs, femur and semen of the different groups were measured. The aggressive test was also realized in two steps: the first, within 4 weeks of the treatment and the other step in the end of the treatment, in this period the animal was isolated. It was not observed alterations in body mass of the groups. Though it was observed a benefic effect on the maximum strength of the... (Complete abstract click electronic access below)
Resumo:
The aim of this study was to investigate the potential relationship between excess post-exercise oxygen consumption (EPOC), heart rate recovery (HRR) and their respective time constants (tvo(2) and t(HR)) and body composition and aerobic fitness (VO(2)max) variables after an anaerobic effort. 14 professional cyclists (age = 28.4 +/- 4.8 years, height = 176.0 +/- 6.7 cm, body mass = 74.4 +/- 8.1 kg, VO(2)max = 66.8 +/- 7.6 mL. kg(-1) . min(-1)) were recruited. Each athlete made 3 visits to the laboratory with 24h between each visit. During the first visit, a total and segmental body composition assessment was carried out. During the second, the athletes undertook an incremental test to determine VO(2)max. In the final visit, EPOC (15-min) and HRR were measured after an all-out 30s Wingate test. The results showed that EPOC is positively associated with % body fat (r = 0.64), total body fat (r = 0.73), fat-free mass (r = 0.61) and lower limb fat-free mass (r = 0.55) and negatively associated with HRR (r = - 0.53, p < 0.05 for all). HRR had a significant negative correlation with total body fat and % body fat (r = - 0.62, r = - 0.56 respectively, p < 0.05 for all). These findings indicate that VO(2)max does not influence HRR or EPOC after high-intensity exercise. Even in short-term exercise, the major metabolic disturbance due to higher muscle mass and total muscle mass may increase EPOC. However, body fat impedes HRR and delays recovery of oxygen consumption after effort in highly trained athletes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We evaluated the muscular strength, endurance, and power responses of 12 college students, ranging in age from 19-40 years, who participated in a 6-wk high-intensity training program commonly used to improve muscular endurance. Muscular strength was measured by a one repetition maximum (1RM) bench press test and a 1RM Hammer bench press test; muscular endurance was measured by administering a 70-percent 1RM test to failure on the Hammer bench press; and upper body power was measured by adminstering a medicine ball throw test. We observed a 4.8-percent improvement of 2.7 kg on the bench press, a 14.6-percent improvement of 10.5 kg on the Hammer bench press, a 45.5-percent improvement with an average increase of five repetitions on the submaximal test to failure and an average improvement of ~ 20 percent, 60 cm, for the medicine ball throw. Foe our subjects, a commonly used high-intensity training muscular endurance program resulted in improved performance on tests measuring muscular strength, endurance, and power, and resulted in zero reported injuries during training or assessment procedures.
Resumo:
Background: The age-related loss of muscle power in older adults is greater than that of muscle strength and is associated with a decline in physical performance. Objective: To investigate the effects of a short-term high-velocity varied resistance training programme on physical performance in healthy community-dwelling adults aged 60-80 years. Methods: Subjects undertook exercise (EX; n = 15) or maintained customary activity (controls, CON; n = 10) for 8 weeks. The EX group trained 2 days/week using machine weights for three sets of eight repetitions at 35, 55, and 75% of their one-repetition maximum (the maximal weight that an individual can lift once with acceptable form) for seven upper- and lower-body exercises using explosive concentric movements. Results: Fourteen EX and 10 CON subjects completed the study. Dynamic muscle strength significantly increased (p = 0.001) in the EX group for all exercises (from 21.4 +/- 9.6 to 82.0 +/- 59.2%, mean +/- SD) following training, as did knee extension power (p < 0.01). Significant improvement occurred for the EX group in the floor rise to standing (10.4 &PLUSMN; 11.5%, p = 0.004), usual 6-metre walk (6.6 &PLUSMN; 8.2%, p = 0.010), repeated chair rise (10.4 &PLUSMN; 15.6%, p = 0.013), and lift and reach (25.6 &PLUSMN; 12.1%, p = 0.002) performance tasks but not in the CON group. Conclusions: Progressive resistance training that incorporates rapid rate-of-force development movements may be safely undertaken in healthy older adults and results in significant gains in muscle strength, muscle power, and physical performance. Such improvements could prolong functional independence and improve the quality of life. Copyright (C) 2005 S. Karger AG, Basel.