984 resultados para High Altitude Pollution Program (U.S.)
Resumo:
Today, a growing number of people, some of them suffering from lung diseases, travel to high altitude resorts. It is sometimes not easy for the general practitioner to adequately counsel these patients. Based on our knowledge of physiopathology and clinical studies, the present paper addresses the effects of high altitude in patients with preexisting lung diseases and provides recommendations in order to optimize the sojourn at high altitude.
Resumo:
Abstract Scherrer, Urs, Yves Allemann, Emrush Rexhaj, Stefano F. Rimoldi, and Claudio Sartori. Mechanisms and drug therapy of pulmonary hypertension at high altitude. High Alt Med Biol 14:126-133, 2013.-Pulmonary vasoconstriction represents a physiological adaptive mechanism to high altitude. If exaggerated, however, it is associated with important morbidity and mortality. Recent mechanistic studies using short-term acute high altitude exposure have provided insight into the importance of defective vascular endothelial and respiratory epithelial nitric oxide (NO) synthesis, increased endothelin-1 bioavailability, and overactivation of the sympathetic nervous system in causing exaggerated hypoxic pulmonary hypertension in humans. Based on these studies, drugs that increase NO bioavailability, attenuate endothelin-1 induced pulmonary vasoconstriction, or prevent exaggerated sympathetic activation have been shown to be useful for the treatment/prevention of exaggerated pulm9onary hypertension during acute short-term high altitude exposure. The mechanisms underpinning chronic pulmonary hypertension in high altitude dwellers are less well understood, but recent evidence suggests that they differ in some aspects from those involved in short-term adaptation to high altitude. These differences have consequences for the choice of the treatment for chronic pulmonary hypertension at high altitude. Finally, recent data indicate that fetal programming of pulmonary vascular dysfunction in offspring of preeclampsia and children generated by assisted reproductive technologies represents a novel and frequent cause of pulmonary hypertension at high altitude. In animal models of fetal programming of hypoxic pulmonary hypertension, epigenetic mechanisms play a role, and targeting of these mechanisms with drugs lowers pulmonary artery pressure. If epigenetic mechanisms also are operational in the fetal programming of pulmonary vascular dysfunction in humans, such drugs may become novel tools for the treatment of hypoxic pulmonary hypertension.
Resumo:
BACKGROUND: Pulmonary edema results from a persistent imbalance between forces that drive water into the air space and the physiologic mechanisms that remove it. Among the latter, the absorption of liquid driven by active alveolar transepithelial sodium transport has an important role; a defect of this mechanism may predispose patients to pulmonary edema. Beta-adrenergic agonists up-regulate the clearance of alveolar fluid and attenuate pulmonary edema in animal models. METHODS: In a double-blind, randomized, placebo-controlled study, we assessed the effects of prophylactic inhalation of the beta-adrenergic agonist salmeterol on the incidence of pulmonary edema during exposure to high altitudes (4559 m, reached in less than 22 hours) in 37 subjects who were susceptible to high-altitude pulmonary edema. We also measured the nasal transepithelial potential difference, a marker of the transepithelial sodium and water transport in the distal airways, in 33 mountaineers who were prone to high-altitude pulmonary edema and 33 mountaineers who were resistant to this condition. RESULTS: Prophylactic inhalation of salmeterol decreased the incidence of high-altitude pulmonary edema in susceptible subjects by more than 50 percent, from 74 percent with placebo to 33 percent (P=0.02). The nasal potential-difference value under low-altitude conditions was more than 30 percent lower in the subjects who were susceptible to high-altitude pulmonary edema than in those who were not susceptible (P<0.001). CONCLUSIONS: Prophylactic inhalation of a beta-adrenergic agonist reduces the risk of high-altitude pulmonary edema. Sodium-dependent absorption of liquid from the airways may be defective in patients who are susceptible to high-altitude pulmonary edema. These findings support the concept that sodium-driven clearance of alveolar fluid may have a pathogenic role in pulmonary edema in humans and therefore represent an appropriate target for therapy.
Resumo:
BACKGROUND: There is considerable interindividual variability in pulmonary artery pressure among high-altitude (HA) dwellers, but the underlying mechanism is not known. At low altitude, a patent foramen ovale (PFO) is present in about 25% of the general population. Its prevalence is increased in clinical conditions associated with pulmonary hypertension and arterial hypoxemia, and it is thought to aggravate these problems. METHODS: We searched for a PFO (transesophageal echocardiography) in healthy HA dwellers (n = 22) and patients with chronic mountain sickness (n = 35) at 3,600 m above sea level and studied its effects (transthoracic echocardiography) on right ventricular (RV) function, pulmonary artery pressure, and vascular resistance at rest and during mild exercise (50 W), an intervention designed to further increase pulmonary artery pressure. RESULTS: The prevalence of PFO (32%) was similar to that reported in low-altitude populations and was not different in participants with and without chronic mountain sickness. Its presence was associated with RV enlargement at rest and an exaggerated increase in right-ventricular-to-right-atrial pressure gradient (25 ± 7 mm Hg vs 15 ± 9 mm Hg, P < .001) and a blunted increase in fractional area change of the right ventricle (3% [-1%, 5%] vs 7% [3%, 16%], P = .008) during mild exercise. CONCLUSIONS: These findings show, we believe for the first time, that although the prevalence of PFO is not increased in HA dwellers, its presence appears to facilitate pulmonary vasoconstriction and RV dysfunction during a mild physical effort frequently associated with daily activity. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01182792; URL: www.clinicaltrials.gov.
Resumo:
Sleep disordered breathing with central apnea or hypopnea frequently occurs at high altitude and is thought to be caused by a decrease in blood CO(2) level. The aim of this study was to assess the effects of added respiratory dead space on sleep disordered breathing.
Resumo:
AIM: Acute mountain sickness (AMS) can result in pulmonary and cerebral oedema with overperfusion of microvascular beds, elevated hydrostatic capillary pressure, capillary leakage and consequent oedema as pathogenetic mechanisms. Data on changes in glomerular filtration rate (GFR) at altitudes above 5000 m are very limited. METHODS: Thirty-four healthy mountaineers, who were randomized to two acclimatization protocols, undertook an expedition on Muztagh Ata Mountain (7549 m) in China. Tests were performed at five altitudes: Zurich pre-expedition (PE, 450 m), base camp (BC, 4497 m), Camp 1 (C1, 5533 m), Camp 2 (C2, 6265 m) and Camp 3 (C3, 6865 m). Cystatin C- and creatinine-based (Mayo Clinic quadratic equation) GFR estimates (eGFR) were assessed together with Lake Louise AMS score and other tests. RESULTS: eGFR significantly decreased from PE to BC (P < 0.01). However, when analysing at changes between BC and C3, only cystatin C-based estimates indicated a significant decrease in GFR (P = 0.02). There was a linear decrease in eGFR from PE to C3, with a decrease of approx. 3.1 mL min(-1) 1.73 m(-2) per 1000 m increase in altitude. No differences between eGFR of the two groups with different acclimatization protocols could be observed. There was a significant association between eGFR and haematocrit (P = 0.01), whereas no significant association between eGFR and aldosterone, renin and brain natriuretic peptide could be observed. Finally, higher AMS scores were significantly associated with higher eGFR (P = 0.01). CONCLUSIONS: Renal function declines when ascending from low to high altitude. Cystatin C-based eGFR decreases during ascent in high altitude expedition but increases with AMS scores. For individuals with eGFR <40 mL min(-1) 1.73 m(-2), caution may be necessary when planning trips to high altitude above 4500 m above sea level.
Resumo:
In order to evaluate the influence of particle transport episodes on particle number concentration temporal trends at both urban and high-altitude (Aitana peak-1558 m a.s.l.) stations, a simultaneous sampling campaign from October 2011 to September 2012 was performed. The monitoring stations are located in southeastern Spain, close to the Mediterranean coast. The annual average value of particle concentration obtained in the larger accumulation mode (size range 0.25–1 μm) at the mountain site, 55.0 ± 3.0 cm− 3, was practically half that of the value obtained at the urban station (112.0 ± 4.0 cm− 3). The largest difference between both stations was recorded during December 2011 and January 2012, when particles at the mountain station registered the lowest values. It was observed that during urban stagnant episodes, particle transport from urban sites to the mountain station could take place under specific atmospheric conditions. During these transports, the major particle transfer is produced in the 0.5–2 μm size range. The minimum difference between stations was recorded in summer, particularly in July 2012, which is most likely due to several particle transport events that affected only the mountain station. The particle concentration in the coarse mode was very similar at both monitoring sites, with the biggest difference being recorded during the summer months, 0.4 ± 0.1 cm− 3 at the urban site and 0.9 ± 0.1 cm− 3 at the Aitana peak in August 2012. Saharan dust outbreaks were the main factor responsible for these values during summer time. The regional station was affected more by these outbreaks, recording values of > 4.0 cm− 3, than the urban site. This long-range particle transport from the Sahara desert also had an effect upon O3 levels measured at the mountain station. During periods affected by Saharan dust outbreaks, ozone levels underwent a significant decrease (3–17%) with respect to its mean value.
Resumo:
"June 1983."
Resumo:
"B-252539"--P. [1].
Resumo:
Background: There is increasing evidence that hypoxia induces inflammation in the gastrointestinal tract. The clinical impact of hypoxia in patients with inflammatory bowel disease (IBD) is so far poorly investigated. Aim: We wanted to evaluate if flights and journeys to regions >= 2000 meter above sea level are associated with the occurrence of flares in IBD patients in the following 4 weeks. Methods: A questionnaire was completed by inpatients and outpatients of the IBD clinics of three tertiary referral centers presenting with an IBD flare. Patients were inquired about their habits in the 4 weeks prior to the flare. Patients with flares were matched with an IBD group in remission during the observation period (according to age, gender, smoking habits, and medication). Results: A total of 103 IBD patients were included (43 Crohn's disease (CD), whereof 65% female, 60 ulcerative colitis, whereof 47% female, mean age 39.3 ± 14.6 years for CD and 43.1 ± 14.2 years for UC). Fifty-two patients with flares were matched to 51 patients without flare. Overall, IBD-patients with flares had significantly more frequently a flight and/or journey to regions >= 2000 meters above sea level in the observation period compared to the patients in remission (21/52 (40.4%) vs. 8/51 (15.7%), p = 0.005). There was a statistically significant correlation between the occurrence of a flare and a flight and/or journey to regions >= 2000 meters above sea level among CD patients with flares as compared to CD patients in remission (8/21 (38.1%) vs. 2/22 (9.1%), p = 0.024). A trend for more frequent flights and high-altitude journeys was observed in UC patients with flares (13/31 (41.9%) vs. 6/29 (20.7%), p = 0.077). Mean flight duration was 5.8 ± 4.3 hours. The groups were controlled for the following factors (always flare group cited first): age (39.6 ± 13.4 vs. 43.5 ± 14.6, p = 0.102), smoking (16/52 vs. 10/51, p = 0.120), regular sports activities (32/52 vs. 33/51, p = 0.739), treatment with antibiotics in the 4 weeks before flare (8/52 vs. 7/51, p = 0.811), NSAID intake (12/52 vs. 7/51, p = 0.221), frequency of chronic obstructive pulmonary disease (both groups 0) and oxygen therapy (both groups 0). Conclusion: IBD patients with a flare had significantly more frequent flights and/or high-altitude journeys within four weeks prior to the IBD flare compared to the group that was in remission. We conclude that flights and stays in high altitude are a risk factor for IBD flares.
Resumo:
High altitude constitutes an exciting natural laboratory for medical research. Although initially, the aim of high-altitude research was to understand the adaption of the organism to hypoxia and find treatments for altitude-related diseases, during the past decade or so, the scope of this research has broadened considerably. Two important observations led the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema represents a unique model that allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Second, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we will review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.
Resumo:
Background: There is increasing experimental evidence that hypoxia induces inflammation in the gastrointestinal tract. Hypoxia-inducible transcription factor (HIF)-1α influences adaptive immunity and has been shown to induce barrier-protective genes in the case of experimentally-induced colitis. The clinical impact of hypoxia in patients with inflammatory bowel disease (IBD) is so far poorly investigated. Aim: We wanted to evaluate if flights and journeys to regions ≥2000 meter above sea level are associated with the occurrence of flares in IBD patients in the following 4 weeks. Methods: A questionnaire was completed by inpatients and outpatients of the IBD clinics of three tertiary referral centers presenting with an IBD flare in the period from Sept 1st 2009 to August 31st 2010. Patients were inquired about their habits in the 4 weeks prior to the flare. Patients with flares were matched with an IBD group in remission during the observation period (according to age, gender, smoking habits, and medication). Results: A total of 103 IBD patients were included (43 Crohn's disease (CD), whereof 65% female, 60 ulcerative colitis, whereof 47% female, mean age 39.3±14.6 years for CD and 43.1±14.2 years for UC). Fifty-two patients with flares were matched to 51 patients without flare. Overall, IBD-patients with flares had significantly more frequently a flight and/or journey to regions ≥ 2000 meters above sea level in the observation period compared to the patients in remission (21/52 (40.4%) vs. 8/51 (15.7%), p=0.005). There was a statistically significant correlation between the occurrence of a flare and a flight and/or journey to regions ≥ 2000 meters above sea level among CD patients with flares as compared to CD patients in remission (8/21 (38.1%) vs. 2/22 (9.1%), p=0.024). A trend for more frequent flights and high-altitude journeys was observed in UC patients with flares (13/31 (41.9%) vs. 6/29 (20.7%), p=0.077). Mean flight duration was 5.8±4.3 hours. The groups were controlled for the following factors (always flare group cited first): age (39.6±13.4 vs. 43.5±14.6, p=0.102), smoking (16/52 vs. 10/51, p=0.120), regular sports activities (32/ 52 vs. 33/51, p=0.739), treatment with antibiotics in the 4 weeks before flare (8/52 vs. 7/ 51, p=0.811), NSAID intake (12/52 vs. 7/51, p=0.221), frequency of chronic obstructive pulmonary disease (both groups 0) and oxygen therapy (both groups 0). Conclusion: IBD patients with a flare had significantly more frequent flights and/or high-altitude journeys within four weeks prior to the IBD flare compared to the group that was in remission. We conclude that flights and stays in high altitude are a risk factor for IBD flares.
Resumo:
Mineral dust aerosols recently collected at the high-altitude Jungfraujoch research station (46 degrees 33'51 `' N, 7 degrees 59'06 `' E; 3580 m a.s.l.) were compared to mineral dust deposited at the Colle Gnifetti glacier (45 degrees 52'50 `' N, 7 degrees 52'33 `' E; 4455 m a.s.l.) over the last millennium. Radiogenic isotope signatures and backward trajectories analyses indicate that major dust sources are situated in the north-central to north-western part of the Saharan desert. Less radiogenic Sr isotopic compositions of PM10 aerosols and of mineral particles deposited during periods of low dust transfer likely result from the enhancement of the background chemically-weathered Saharan source. Saharan dust mobilization and transport were relatively reduced during the second part of the Little Ice Age (ca. 1690-1870) except within the greatest Saharan dust event deposited around 1770. After ca. 1870, sustained dust deposition suggests that increased mineral dust transport over the Alps during the last century could be due to stronger spring/summer North Atlantic southwesterlies and drier winters in North Africa. On the other hand, increasing carbonaceous particle emissions from fossil fuel combustion combined to a higher lead enrichment factor point to concomitant anthropogenic sources of particulate pollutants reaching high-altitude European glaciers during the last century.