927 resultados para Hetroatomatic rings
Resumo:
Este livro, agora publicado pelo INIC, é o resultado de um trabalho de investigação realizado entre 1985 e 1987 para a obtenção do grau de Mestre em Estudos Literários Comparados pela Faculdade de Ciências Sociais e Humanas da Universidade Nova de Lisboa. A literatura fantástica é uma área da literatura mundial que recebeu nas últimas décadas um grande interesse por parte da comunidade científica internacional. A multiplicação das associações, reuniões e congressos, a par da crescente produção teórica e científica, dão prova da vitalidade desta área da crítica literária. Parte deste movimento foi precisamente despoletado pelo interesse provocado pela obra de 1. R. R. Tolkien e de outros autores como C. S. Lewis, Charles Williams, etc. Este fenómeno internacional não teve ainda reais desenvolvimentos em Portugal. Cinco anos volvidos sobre a realização deste trabalho verificamos que ele é um dos primeiros (senão o primeiro) editado entre nós que, de uma forma sistemática e científica, analisa a obra de Tolkien, abordando ainda, embora de forma breve, a problemática da ficção fantástica contemporânea.
Resumo:
In this paper, we introduce a new notion in a semigroup $S$ as an extension of Mary's inverse. Let $a,d\in S$. An element $a$ is called left (resp. right) invertible along $d$ if there exists $b\in S$ such that $bad=d$ (resp. $dab=b$) and $b\leq_\mathcal{L}d$ (resp. $b\leq_\mathcal{R}d$). An existence criterion of this type inverse is derived. Moreover, several characterizations of left (right) regularity, left (right) $\pi$-regularity and left (right) $*$-regularity are given in a semigroup. Further, another existence criterion of this type inverse is given by means of a left (right) invertibility of certain elements in a ring. Finally we study the (left, right) inverse along a product in a ring, and, as an application, Mary's inverse along a matrix is expressed.
Resumo:
This work describes the synthesis and characterisation of Ni(II) complexes of the following neutral bidentate nitrogen ligands containing pyrazole (pz), pyrimidine (pm) and pyridine (py) aromatic rings: 2-pyrazol-1-yl-pyrimidine (pzpm), 2-(4-methyl-pyrazol-1-yl)-pyrimidine (4-Mepzpm), 2-(4-bromo-pyrazol-1-yl)-pyrimidine (4-Brpzpm), 2-(3,5-dimethyl-pyrazol-1-yl)-pyrimidine (pz*pm), 2-pyrazol-1-yl-pyridine (pzpy) and bis(3,5-dimethylpyrazol-1-yl)phenylmethane (bpz*mph). The complexes [NiBr2(pzpm)] (1), [NiBr2(4-Mepzpm)] (2), [NiBr2(4-Brpzpm)] (3), [NiBr2(pz*pm)] (4), [NiBr2(pzpy)] (5) and [NiBr2(bpz*mph)] (6) were tested as catalysts for ethylene polymerisation, in the presence of the cocatalysts methylaluminoxane (MAO) or diethylaluminium chloride (AlEt2Cl), the catalyst systems 1-3/MAO showing moderate to high activities up to the temperature of 20 °C only in the presence of MAO, whereas 4-6/MAO revealed to be inactive. Other related Pd(II) complexes, already reported in previous works, such as [PdClMe(pzpm)], [PdClMe(pz*pm)], [PdClMe(pzpy)] and [PdClMe(bpz*mph)], also showed to be inactive in the polymerisation of ethylene, when activated by MAO or AlEt2Cl. Selected samples of polyethylene products were characterised by GPC/SEC, 1H and 13C NMR and DSC, showing to be low molecular weight polymers with Mn values ranging from ca. 550 to 1500 g mol−1 and unusually low dispersities of 1.2–1.7, with total branching degrees generally varying between 2 and 12%, melting temperatures from 40 to 120 °C and crystallinities from 40 to 70%.
Resumo:
Recently there has been a great deal of work on noncommutative algebraic cryptography. This involves the use of noncommutative algebraic objects as the platforms for encryption systems. Most of this work, such as the Anshel-Anshel-Goldfeld scheme, the Ko-Lee scheme and the Baumslag-Fine-Xu Modular group scheme use nonabelian groups as the basic algebraic object. Some of these encryption methods have been successful and some have been broken. It has been suggested that at this point further pure group theoretic research, with an eye towards cryptographic applications, is necessary.In the present study we attempt to extend the class of noncommutative algebraic objects to be used in cryptography. In particular we explore several different methods to use a formal power series ring R && x1; :::; xn && in noncommuting variables x1; :::; xn as a base to develop cryptosystems. Although R can be any ring we have in mind formal power series rings over the rationals Q. We use in particular a result of Magnus that a finitely generated free group F has a faithful representation in a quotient of the formal power series ring in noncommuting variables.
Resumo:
Background and Aims: Two distinct e ndoscopic phenotypes of E osinophilic Esophagitis (EoE) h ave been identified: t he inflammatory (IP) a nd the stenosing (SP) p henotype. I t is not known whether these EoE-associated phenotypes are reflective of different phases during disease course. We aimed to assess the phenotype a t initial EoE p resentation and d iagnosis and to evaluate if SP increases over time. Methods: R etrospective a nalysis of t he Swiss EoE Database (SEED) extended b y a review of p atients charts, endoscopy and pathology records. Results: F orty-four E oE p atients were a nalyzed (33 males, mean age at index visit 41 ± 14 years, all Caucasians). Median follow-up t ime was 3.1 years (IQR 1-4, r ange 1 -18 years). Median diagnostic delay w as 5 y ears (IQR 2-16, range 0-34 years). A t first diagnosis, 3 2% ( 14/44) o f EoE patients h ad already presented w ith a stenosis. T he mean d iameter o f the stenoses w as 1 0 ± 2 mm, and the mean length was 2 .8 ± 2 .9 cm. Peak e osinophil count d id n ot c hange over t ime (48 ± 39 eos/HPF at index visit vs. 59 ± 41 eos/HPF at end of follow-up, n=44). The risk of the presence of a stenosis at index visit was 0% f or a d isease duration of 0 -4 y ears, 37% f or a d isease duration between 5-10 years and 67% f or a d isease duration >10 years (p = 0.0035, trend test). Conclusions: T he frequency of e sophageal stenoses i s proportional to the disease duration, whereas the inflammatory activity does n ot s ignificantly c hange over t ime. O ur f indings underscore the necessity to reduce diagnostic delay in EoE and to control the underlying inflammatory processes to prevent esophageal remodeling.
Resumo:
Proteins that catalyse homologous recombination have been identified in all living organisms and are essential for the repair of damaged DNA as well as for the generation of genetic diversity. In bacteria homologous recombination is performed by the RecA protein, whereas in the eukarya a related protein called Rad51 is required to catalyse recombination and repair. More recently, archaeal homologues of RecA/Rad51 (RadA) have been identified and isolated. In this work we have cloned and purified the RadA protein from the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus and characterised its in vitro activities. We show that (i) RadA protein forms ring structures in solution and binds single- but not double-stranded DNA to form nucleoprotein filaments, (ii) RadA is a single-stranded DNA-dependent ATPase at elevated temperatures, and (iii) RadA catalyses efficient D-loop formation and strand exchange at temperatures of 60-70 degrees C. Finally, we have used electron microscopy to visualise RadA-mediated joint molecules, the intermediates of homologous recombination. Intriguingly, RadA shares properties of both the bacterial RecA and eukaryotic Rad51 recombinases.
Resumo:
We have studied the structure and dipole charge-density response of nanorings as a function of the magnetic field using local-spin-density-functional theory. Two small rings consisting of 12 and 22 electrons confined by a positively charged background are used to represent the cases of narrow and wide rings. The results are qualitatively compared with experimental data existing on microrings and on antidots. A smaller ring containing five electrons is also analyzed to allow for a closer comparison with a recent experiment on a two-electron quantum ring.
Resumo:
We have employed time-dependent local-spin-density theory to analyze the far-infrared transmission spectrum of InAs self-assembled nanoscopic rings recently reported [A. Lorke et al., Phys. Rev. Lett. (to be published)]. The overall agreement between theory and experiment is fairly good, which on the one hand confirms that the experimental peaks indeed reflect the ringlike structure of the sample, and on the other hand, asseses the suitability of the theoretical method to describe such nanostructures. The addition energies of one- and two-electron rings are also reported and compared with the corresponding capacitance spectra
Resumo:
We present a systematic study of ground state and spectroscopic properties of many-electron nanoscopic quantum rings. Addition energies at zero magnetic field (B) and electrochemical potentials as a function of B are given for a ring hosting up to 24 electrons. We find discontinuities in the excitation energies of multipole spin and charge density modes, and a coupling between the charge and spin density responses that allow to identify the formation of ferromagnetic ground states in narrow magnetic field regions. These effects can be observed in Raman experiments, and are related to the fractional Aharonov-Bohm oscillations of the energy and of the persistent current in the ring
Resumo:
The ground state structure of few-electron concentric double quantum rings is investigated within the local spin density approximation. Signatures of inter-ring coupling in the addition energy spectrum are identified and discussed. We show that the electronic configurations in these structures can be greatly modulated by the inter-ring distance: At short and long distances the low-lying electron states localize in the inner and outer rings, respectively, and the energy structure is essentially that of an isolated single quantum ring. However, at intermediate distances the electron states localized in the inner and the outer ring become quasidegenerate and a rather entangled, strongly-correlated system is formed.
Resumo:
Within local-spin-density functional theory, we have investigated the ¿dissociation¿ of few-electron circular vertical semiconductor double quantum ring artificial molecules at zero magnetic field as a function of interring distance. In a first step, the molecules are constituted by two identical quantum rings. When the rings are quantum mechanically strongly coupled, the electronic states are substantially delocalized, and the addition energy spectra of the artificial molecule resemble those of a single quantum ring in the few-electron limit. When the rings are quantum mechanically weakly coupled, the electronic states in the molecule are substantially localized in one ring or the other, although the rings can be electrostatically coupled. The effect of a slight mismatch introduced in the molecules from nominally identical quantum wells, or from changes in the inner radius of the constituent rings, induces localization by offsetting the energy levels in the quantum rings. This plays a crucial role in the appearance of the addition spectra as a function of coupling strength particularly in the weak coupling limit.
Resumo:
We have investigated the dipole charge- and spin-density response of few-electron two-dimensional concentric nanorings as a function of the intensity of a erpendicularly applied magnetic field. We show that the dipole response displays signatures associated with the localization of electron states in the inner and outer ring favored by the perpendicularly applied magnetic field. Electron localization produces a more fragmented spectrum due to the appearance of additional edge excitations in the inner and outer ring.