993 resultados para Heterologous functional


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristic "foxy" aroma of Vilis labrusca Concord grapes is due in large part to methyl anthranilate, a volatile ester formed by the enzyme anthraniloyl- CoA:methanol anthraniloyltransferase (VIAMAT) of the superfamily of BARD acyltransferases. The publication of the genome ofthe closely related wine grape Vilis vinifera, which does not accumulate methyl anthranilate, permitted the searching for any putative VlAU4T-like genes, with the result of 5 highly homologous candidates being found, with one candidate sharing 95% identity to VlAU4T. Probing the gene expression of 18 different cultivars of V. vinifora ripe berries by RT -PCR showed that many varieties do indeed express VlAU4T-like genes. Subsequent cloning of the full-length open reading frame of one of these genes from eDNA prepared from the cultivar Sauvignon Blanc permitted preliminary biochemical characterization of the enzyme after heterologous expression in E. coli. It was determined that this alcohol acyltransferase (named VvsbAATl) catalyzes the formation of cis-3-hexenyl acetate, a "green-leaf' volatile. Although the cloned gene from Sauvignon Blanc had 95% identity at the amino acid level to VIAMAT, it displayed an altered substrate specificity and expression pattern. These results highlight the difficulty in predicting substrate specificity and function of enzymes through the basis of sequence homology, which is a common finding in the study of BARD acyltransferases. Also, the determination of function of VvsbAATl and other BARD acyltransferases in V. vinifera could be used as a genetic marker for certain aroma characteristics in grape breeding programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Odorant receptors and other chemoreceptors are usually poorly expressed in the plasma membrane of heterologous cells. A key point of regulation in G protein-mediated signaling is the interconversion between the active GTP-bound and inactive GDP-bound states of the G alpha subunit, which regulatory proteins, such as guanine nucleotide exchange factors (GEFs), can control. GEFs stimulate formation of the GTP-bound state of G alpha and therefore are considered to work as positive regulators of G protein-coupled receptor signaling. Ric-8B, a GEF that is specifically expressed in olfactory sensory neurons, promotes functional expression of odorant receptors in HEK293T cells because it amplifies the initially low receptor signaling through G alpha olf. This same strategy could be used to functionally express other types of chemoreceptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yeasts are attractive hosts for heterologous protein production as they follow the general eukaryotic post-translational modification pattern. The well-known Saccharomyces cerevisiae has been used to produce a large variety of foreign proteins. The proper function of muscle tropomyosin depends on a specific modification at its N-terminus. Although tropomyosin has been produced in different expression systems, only the recombinant protein produced in the yeast Pichia pastoris has native-like functional properties. In this paper we describe the production of functional skeletal muscle tropomyosin in the yeast S. cerevisiae. The recombinant protein was produced in high amounts and production was strongly affected by genetic and environmental factors, including plasmid copy number, promoter strength, and growth media composition. (C) 2003 Elsevier B.V. (USA). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transposable elements (TEs) account for a large portion of plant genomes, particularly in grasses, in which they correspond to 50%-80% of the genomic content. TEs have recently been shown to be a source of new genes and new regulatory networks. The most striking contribution of TEs is referred as "molecular domestication", by which the element coding sequence loses its movement capacity and acquires cellular function. Recently, domesticated transposases known as mustang and derived from the Mutator element have been described in sugarcane. In order to improve our understanding of the function of these proteins, we identified mustang genes from Sorghum bicolor and Zea mays and performed a phenetic analysis to assess the diversity and evolutionary history of this gene family. This analysis identified orthologous groups and showed that mustang genes are highly conserved in grass genomes. We also explored the transcriptional activity of sugarcane mustang genes in heterologous and homologous systems. These genes were found to be ubiquitously transcribed, with shoot apical meristem having the highest expression levels, and were downregulated by phytohormones. Together, these findings suggest the possible involvement of mustang proteins in the maintenance of hormonal homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ketamine is an anesthetic and analgesic regularly used in veterinary patients. As ketamine is almost always administered in combination with other drugs, interactions between ketamine and other drugs bear the risk of either adverse effects or diminished efficacy. Since cytochrome P450 enzymes (CYPs) play a pivotal role in the phase I metabolism of the majority of all marketed drugs, drug-drug interactions often occur at the active site of these enzymes. CYPs have been thoroughly examined in humans and laboratory animals, but little is known about equine CYPs. The characterization of equine CYPs is essential for a better understanding of drug metabolism in horses. We report annotation, cloning and heterologous expression of the equine CYP2B6 in V79 Chinese hamster fibroblasts. After computational annotation of all CYP2B genes, the coding sequence (CDS) of equine CYP2B6 was amplified by RT-PCR from horse liver total RNA and revealed an amino acid sequence identity of 77% and a similarity of 93.7% to its human ortholog. A non-synonymous variant c.226G>A in exon 2 of the equine CYP2B6 was detected in 97 horses. The mutant A-allele showed an allele frequency of 82%. Two further variants in exon 3 were detected in one and two horses of this group, respectively. Transfected V79 cells were incubated with racemic ketamine and norketamine as probe substrates to determine metabolic activity. The recombinant equine CYP2B6 N-demethylated ketamine to norketamine and produced metabolites of norketamine, such as hydroxylated norketamines and 5,6-dehydronorketamine. V(max) for S-/and R-norketamine formation was 0.49 and 0.45nmol/h/mg cellular protein and K(m) was 3.41 and 2.66μM, respectively. The N-demethylation of S-/R-ketamine was inhibited concentration-dependently with clopidogrel showing an IC(50) of 5.63 and 6.26μM, respectively. The functional importance of the recorded genetic variants remains to be explored. Equine CYP2B6 was determined to be a CYP enzyme involved in ketamine and norketamine metabolism, thus confirming results from inhibition studies with horse liver microsomes. Clopidogrel seems to be a feasible inhibitor for equine CYP2B6. The specificity still needs to be established with other single equine CYPs. Heterologous expression of single equine CYP enzymes opens new possibilities to substantially improve the understanding of drug metabolism and drug interactions in horses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uptake through the dopamine transporter (DAT) represents the primary mechanism used to terminate dopaminergic transmission in brain. Although it is well known that dopamine (DA) taken up by the transporter is used to replenish synaptic vesicle stores for subsequent release, the molecular details of this mechanism are not completely understood. Here, we identified the synaptic vesicle protein synaptogyrin-3 as a DAT interacting protein using the split ubiquitin system. This interaction was confirmed through coimmunoprecipitation experiments using heterologous cell lines and mouse brain. DAT and synaptogyrin-3 colocalized at presynaptic terminals from mouse striatum. Using fluorescence resonance energy transfer microscopy, we show that both proteins interact in live neurons. Pull-down assays with GST (glutathione S-transferase) proteins revealed that the cytoplasmic N termini of both DAT and synaptogyrin-3 are sufficient for this interaction. Furthermore, the N terminus of DAT is capable of binding purified synaptic vesicles from brain tissue. Functional assays revealed that synaptogyrin-3 expression correlated with DAT activity in PC12 and MN9D cells, but not in the non-neuronal HEK-293 cells. These changes were not attributed to changes in transporter cell surface levels or to direct effect of the protein-protein interaction. Instead, the synaptogyrin-3 effect on DAT activity was abolished in the presence of the vesicular monoamine transporter-2 (VMAT2) inhibitor reserpine, suggesting a dependence on the vesicular DA storage system. Finally, we provide evidence for a biochemical complex involving DAT, synaptogyrin-3, and VMAT2. Collectively, our data identify a novel interaction between DAT and synaptogyrin-3 and suggest a physical and functional link between DAT and the vesicular DA system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a "collision-coupling" model for $\beta \sb 2$-adrenergic receptor-mediated activation of adenylylcyclase in S49 lymphoma cells, the rate-limiting step of that activation was identified as the association of an "active-state", hormone-bound receptor (HR$\sp\*$) with a G$\sb{\rm s}$-adenylylcyclase moiety (G$\sb{\rm s}$C). It was subsequently hypothesized that the location of the rate-limiting step would not be shifted elsewhere in the activation scheme by receptor desensitization. The traditional focus of receptor desensitization studies has been on modifications of the receptor molecule itself. A "clear-cut" answer to the present hypothesis provides new information on modifications in the function of the receptor following desensitization.^ "Heterologous" desensitization was induced in wild type S49 cells with agents which increase intracellular cAMP without occupying $\beta\sb2$-adrenergic receptors; PGE$\sb1$, forskolin and dibutyryl cAMP. These treatments avoided overlapping effects on $\beta\sb2$-adrenergic receptors by the "homologous" mechanism, in which occupancy by hormone is causative. Although the steady-state activation rate was decreased following heterologous desensitization, that rate was still limited by the association between HR* and G$\sb{\rm s}$C. Thus "heterologous" desensitization acts at the equilibrium between HR and HR* (which is driven by hormone efficiency) such that HR* formation becomes less likely and the frequency of HR*G$\sb{\rm s}$C associations decreases.^ "Homologous" desensitization was induced by high (1-10$\mu$M) epinephrine concentrations in the S49 variant deficient in cAMP-dependent protein kinase, KIN$\sp-$. Use of KIN$\sp-$minimized overlapping effects by the "heterologous" mechanism, which is PKA-dependent. Following homologous desensitization, roughly 50% of the receptors in plasma membrane preparations no longer formed HR*G$\sb{\rm s}$C complexes; evidenced by a decrease in high-affinity hormone binding sites. The loss of HR*G$\sb{\rm s}$C formation did not appear related to the HR/HR* equilibrium. Increasing the efficiency of the assay agonist did nothing to "override" the effect. HR*G$\sb{\rm s}$C association was still the rate-limiting step among the remaining functional receptors. It was not distinguishable whether the remaining activity was "desensitized" due to adenylylcyclase having decreased access to receptors within plasma membrane fragments or due to an effect similar to "heterologous" desensitization. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

USF, Upstream Stimulatory Factor, is a family of ubiquitous transcription factors that contain highly conserved basic helix-loop-helix leucine zipper DNA binding domains and recognize the core DNA sequence CACGTG. In human and mouse, two members of the USF family, USF1 and USF2, encoded by two different genes, contribute to the USF activity. In order to gain insights into the mechanisms by which USFs function as transcriptional activators, different approaches were used to map the domains of USF2 responsible for nuclear localization and transcriptional activation. Two stretches of amino acids, one in the basic region of the DNA binding domain, the other in a highly conserved N-terminal region, were found to direct nuclear localization independently of one another. Two distinct activation domains were also identified. The first one, located in the conserved N-terminal region that overlaps the C-terminal nuclear localization signal, functioned only in the presence of an initiator element in the promoter of the reporter. The second, in a nonconserved region, activated transcription in the absence of an initiator element or when fused to a heterologous DNA binding domain. These results suggest that USF2 functions in different promoter contexts by selectively utilizing different activation domains.^ The deletion analysis of USF2 also identified two dominant negative mutants of USF, one lacking the activation domain, the other lacking the basic domain. The latter proved useful for testing the direct involvement of USFs in the transcriptional activation mediated by the viral protein IE62.^ To investigate the biological function of USFs, foci and colony formation assays were used to study the growth regulation by USFs. It was found that USFs had a strong antagonistic effect on cellular transformation mediated by the bHLH/LZ protein Myc. This effect required the DNA binding activity of either USF 1 or USF2. Moreover, USF2, but not USF1 or other mutants of USFs, was also found to have strong inhibitory effect on the cellular transformation by E1a and on the growth of HeLa cells. These results demonstrate that USFs could potentially regulate growth through two mechanisms, one by antagonizing the function of Myc in cellular transformation, the other by mediating a more general growth inhibitory effect. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for the culturing and propagation of ovine bone marrow-derived macrophages (BMM) in vitro is described. Bone marrow cells from sterna of freshly slaughtered sheep were cultured in hydrophobic (teflon foil) bags in the presence of high serum concentrations (20% autologous serum and 20% fetal calf serum). During an 18 day culture period in the absence of added conditioned medium, and without medium change, a strong enrichment of mononuclear phagocytes was achieved. Whereas the number of macrophages increased four to fivefold during this time, granulocytes, lymphoid cells, stem cells and undifferentiated progenitor cells were reduced to less than 3% of their numbers at Day 0. This resulted in BMM populations of 94 +/- 3% purity. These cells had morphological and histochemical characteristics of differentiated macrophages, and they performed functions similar to those of non-activated, unprimed human monocyte-derived macrophages. Thus, they avidly ingested erythrocytes coated with IgG of heterologous or homologous origin. They expressed a modest level of procoagulant activity, but upon triggering with lipopolysaccharide (LPS), a marked increase in cell-associated procoagulant activity was observed. LPS triggering promoted the secretion of interleukin-1, as evidenced by measurement of murine thymocyte costimulatory activity, and transforming growth factor-beta. Using the mouse L929 cell cytotoxicity assay as an indication of tumor necrosis factor (TNF) activity, no TNF activity was detected in the same supernatants, a result possibly due to species restriction. BMM generated low levels of O2- upon triggering with phorbol 12-myristate 13-acetate (PMA). On the other hand, no O2- production was observed upon stimulation with zymosan opsonized with ovine or human serum. Using luminol-enhanced chemiluminescence (CL) as a more sensitive indicator of an oxidative burst, both PMA or zymosan were able to trigger CL, but the response was subject to partial inhibition by sodium azide, an inhibitor of myeloperoxidase. This points to non-macrophage cells contributing also to the CL response, and is consistent with the view that unprimed BMM elicit a low oxidative burst upon triggering with strong inducers of a burst. Our functional characterization now allows us to apply priming and activation protocols and to relate their effect to functional alterations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Despite its extensive use as a nitrogen fertilizer, the role of urea as a directly accessible nitrogen source for crop plants is still poorly understood. So far, the physiological and molecular aspects of urea acquisition have been investigated only in few plant species highlighting the importance of a high-affinity transport system. With respect to maize, a worldwide-cultivated crop requiring high amounts of nitrogen fertilizer, the mechanisms involved in the transport of urea have not yet been identified. The aim of the present work was to characterize the high-affinity urea transport system in maize roots and to identify the high affinity urea transporter. Results: Kinetic characterization of urea uptake (<300 mu M) demonstrated the presence in maize roots of a high-affinity and saturable transport system; this system is inducible by urea itself showing higher Vmax and Km upon induction. At molecular level, the ORF sequence coding for the urea transporter, ZmDUR3, was isolated and functionally characterized using different heterologous systems: a dur3 yeast mutant strain, tobacco protoplasts and a dur3 Arabidopsis mutant. The expression of the isolated sequence, ZmDUR3-ORF, in dur3 yeast mutant demonstrated the ability of the encoded protein to mediate urea uptake into cells. The subcellular targeting of DUR3/GFP fusion proteins in tobacco protoplasts gave results comparable to the localization of the orthologous transporters of Arabidopsis and rice, suggesting a partial localization at the plasma membrane. Moreover, the overexpression of ZmDUR3 in the atdur3-3 Arabidopsis mutant showed to complement the phenotype, since different ZmDUR3-overexpressing lines showed either comparable or enhanced 15N]-urea influx than wild-type plants. These data provide a clear evidence in planta for a role of ZmDUR3 in urea acquisition from an extra-radical solution. Conclusions: This work highlights the capability of maize plants to take up urea via an inducible and high-affinity transport system. ZmDUR3 is a high-affinity urea transporter mediating the uptake of this molecule into roots. Data may provide a key to better understand the mechanisms involved in urea acquisition and contribute to deepen the knowledge on the overall nitrogen-use efficiency in crop plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rev-erb alpha belongs to the nuclear receptor superfamily, which contains receptors for steroids, thyroid hormones, retinoic acid, and vitamin D, as well as "orphan" receptors. No ligand has been found for Rev-erb alpha to date, making it one of these orphan receptors. Similar to some other orphan receptors, Rev-erb alpha has been shown to bind DNA as a monomer on a specific sequence called a Rev-erb alpah responsive element (RevRE), but its transcriptional activity remains unclear. In this paper, we characterize a functional RevRE located in the human Rev-erb alpha promoter itself. We also present evidence that (i) Rev-erb alpha mediates transcriptional repression of its own promoter in vitro, (ii) this repressing effect strictly depends on the binding of Rev-erb alpha to its responsive element and is transferable to a heterologous promoter; and (iii) Rev-erb alpha binds to this responsive sequence as a homodimer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pfmdr1 gene has been associated with a drug-resistant phenotype in Plasmodium falciparum, and overexpression of pfmdr1 has been associated with mefloquine- and halofantrine-resistant parasites, but little is known about the functional role of pfmdr1 in this process. Here, we demonstrate that the pfmdr1 gene expressed in a heterologous yeast system functions as a transport molecule and complements a mutation in ste6, a gene which encodes a mating pheromone a-factor export molecule. In addition, the pfmdr1 gene containing two mutations which are associated with naturally occurring chloroquine resistance abolishes this mating phenotype, suggesting that these genetic polymorphisms alter this transport function. Our results support the functional role of pfmdr1 as a transport molecule in the mediation of drug resistance and provide an assay system to address the nature of this transport function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To provide tools for functional molecular genetics of the protozoan parasite Entamoeba histolytica, we investigated the use of the prokaryotic neomycin phosphotransferase (NEO) gene as a selectable marker for the transfection of the parasite. An Escherichia coli-derived plasmid vector was constructed (pA5'A3'NEO) containing the NEO coding region flanked by untranslated 5' and 3' sequences of an Ent. histolytica actin gene. Preceding experiments had revealed that amoebae are highly sensitive to the neomycin analogue G418 and do not survive in the presence of as little as 2 micrograms/ml. Transfection of circular pA5'A3'NEO via electroporation resulted in Ent. histolytica trophozoites resistant to G418 up to 100 micrograms/ml. DNA and RNA analyses of resistant cells indicated that (i) the transfected DNA was not integrated into the amoeba genome but was segregated episomally, (ii) in the amoebae, the plasmid replicated autonomously, (iii) the copy number of the plasmid and the expression of NEO-specific RNA were proportional to the amount of G418 used for selection, and (iv) under continuous selection, the plasmid was propagated over an observation period of 6 months. Moreover, the plasmid could be recloned into E. coli and was found to be unrearranged. To investigate the use of pA5'A3'NEO to coexpress other genes in Ent. histolytica, a second marker, the prokaryotic chloramphenicol acetyltransferase (CAT) gene under control of an Ent. histolytica lectin gene promoter was introduced into the plasmid. Transfection of the amoebae with this construct also conferred G418 resistance and, in addition, allowed continuous expression of CAT activity in quantities corresponding to the amount of G418 used for selection. When selection was discontinued, transfected plasmids were lost as indicated by an exponential decline of CAT activity in trophozoite extracts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biosynthesis of gibberellins (GAs) after GA12-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11.-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA53 to GA44 and GA19 to GA20. The Arabidopsis GA 20-oxidase shares 55% identity and > 80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA5 locus of Arabidopsis. The ga5 semidwarf mutant contains a G-->A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Ara-bidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA4 treatment, suggesting end-product repression in the GA biosynthetic pathway.