995 resultados para Heterogeneous Phase


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modeling study was completed to develop a methodology that combines the sequencing and finite difference methods for the simulation of a heterogeneous model of a tubular reactor applied in the treatment of wastewater. The system included a liquid phase (convection diffusion transport) and a solid phase (diffusion reaction) that was obtained by completing a mass balance in the reactor and in the particle, respectively. The model was solved using a pilot-scale horizontal-flow anaerobic immobilized biomass (HAIB) reactor to treat domestic sewage, with the concentration results compared with the experimental data. A comparison of the behavior of the liquid phase concentration profile and the experimental results indicated that both the numerical methods offer a good description of the behavior of the concentration along the reactor. The advantage of the sequencing method over the finite difference method is that it is easier to apply and requires less computational time to model the dynamic simulation of outlet response of HAIB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic recombination can produce heterogeneous phylogenetic histories within a set of homologous genes. Delineating recombination events is important in the study of molecular evolution, as inference of such events provides a clearer picture of the phylogenetic relationships among different gene sequences or genomes. Nevertheless, detecting recombination events can be a daunting task, as the performance of different recombination-detecting approaches can vary, depending on evolutionary events that take place after recombination. We recently evaluated the effects of post-recombination events on the prediction accuracy of recombination-detecting approaches using simulated nucleotide sequence data. The main conclusion, supported by other studies, is that one should not depend on a single method when searching for recombination events. In this paper, we introduce a two-phase strategy, applying three statistical measures to detect the occurrence of recombination events, and a Bayesian phylogenetic approach in delineating breakpoints of such events in nucleotide sequences. We evaluate the performance of these approaches using simulated data, and demonstrate the applicability of this strategy to empirical data. The two-phase strategy proves to be time-efficient when applied to large datasets, and yields high-confidence results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic recombination can produce heterogeneous phylogenetic histories within a set of homologous genes. Delineating recombination events is important in the study of molecular evolution, as inference of such events provides a clearer picture of the phylogenetic relationships among different gene sequences or genomes. Nevertheless, detecting recombination events can be a daunting task, as the performance of different recombination-detecting approaches can vary, depending on evolutionary events that take place after recombination. We previously evaluated the effects of post-recombination events on the prediction accuracy of recombination-detecting approaches using simulated nucleotide sequence data. The main conclusion, supported by other studies, is that one should not depend on a single method when searching for recombination events. In this paper, we introduce a two-phase strategy, applying three statistical measures to detect the occurrence of recombination events, and a Bayesian phylogenetic approach to delineate breakpoints of such events in nucleotide sequences. We evaluate the performance of these approaches using simulated data, and demonstrate the applicability of this strategy to empirical data. The two-phase strategy proves to be time-efficient when applied to large datasets, and yields high-confidence results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes preliminary work done towards the development of new metallic heterogeneous catalysts to be used in the transesterification reaction of triglycerides, which is of considerable interest in the production of biodiesel. Biodiesel, is a mixture of mono-alkyl esters of fatty acids, and is currently manufactured by transesterification of triglycerides with methanol using NaOH or KOH as liquid base catalyst. Catalysts as such are corrosive to the equipment, and as these catalysts are in liquid phase must be neutralized after the completion of the reaction, typically using HCl, thus producing salt streams. Moreover, due to the presence of free fatty acids it reacts to form soaps as unwanted by-products, hence requiring more expensive separation processes. Therefore, there is a great need on the development of industrial processes for biodiesel production using solid acid catalysts. The key benefit of using solid acid catalysts is that no polluting by-products are formed and the catalysts do not have to be removed since they do not mix with the biodiesel product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A copper(II) chiral aza-bis(oxazoline) homogeneous catalyst (CuazaBox) was anchored onto the external surface of MCM-22 and ITQ-2 structures, as well as encapsulated into hierarchical MCM-22. The transition metal complex loading onto the porous solids was determined by ICP-AES and the materials were also characterized by elemental analysis (C, N, H, S), FTIR, XPS, TG and low temperature N-2 adsorption isotherms. The materials were tested as heterogeneous catalysts in the benchmark reaction of cyclopropanation of styrene to check the effect of the immobilization procedure on the catalytic parameters, as well as on their reutilization in several catalytic cycles. Catalyst CuazaBox anchored onto the external surface of MCM-22 and ITQ-2 materials were more active and enantioselective in the cyclopropanation of styrene than the corresponding homogeneous phase reaction run under similar experimental conditions. This is due to the propylation of the acidic aza-Box nitrogen. HMCM-22 was nevertheless the best heterogeneous catalyst. Encapsulation of CuazaBox on post-synthesis modified MCM-22 materials led to low activities and enantioselectivities. But reversal on the stereochemical course of the reaction was observed, probably due to confinement effect. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern multicore processors for the embedded market are often heterogeneous in nature. One feature often available are multiple sleep states with varying transition cost for entering and leaving said sleep states. This research effort explores the energy efficient task-mapping on such a heterogeneous multicore platform to reduce overall energy consumption of the system. This is performed in the context of a partitioned scheduling approach and a very realistic power model, which improves over some of the simplifying assumptions often made in the state-of-the-art. The developed heuristic consists of two phases, in the first phase, tasks are allocated to minimise their active energy consumption, while the second phase trades off a higher active energy consumption for an increased ability to exploit savings through more efficient sleep states. Extensive simulations demonstrate the effectiveness of the approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consider the problem of scheduling a task set τ of implicit-deadline sporadic tasks to meet all deadlines on a t-type heterogeneous multiprocessor platform where tasks may access multiple shared resources. The multiprocessor platform has m k processors of type-k, where k∈{1,2,…,t}. The execution time of a task depends on the type of processor on which it executes. The set of shared resources is denoted by R. For each task τ i , there is a resource set R i ⊆R such that for each job of τ i , during one phase of its execution, the job requests to hold the resource set R i exclusively with the interpretation that (i) the job makes a single request to hold all the resources in the resource set R i and (ii) at all times, when a job of τ i holds R i , no other job holds any resource in R i . Each job of task τ i may request the resource set R i at most once during its execution. A job is allowed to migrate when it requests a resource set and when it releases the resource set but a job is not allowed to migrate at other times. Our goal is to design a scheduling algorithm for this problem and prove its performance. We propose an algorithm, LP-EE-vpr, which offers the guarantee that if an implicit-deadline sporadic task set is schedulable on a t-type heterogeneous multiprocessor platform by an optimal scheduling algorithm that allows a job to migrate only when it requests or releases a resource set, then our algorithm also meets the deadlines with the same restriction on job migration, if given processors 4×(1+MAXP×⌈|P|×MAXPmin{m1,m2,…,mt}⌉) times as fast. (Here MAXP and |P| are computed based on the resource sets that tasks request.) For the special case that each task requests at most one resource, the bound of LP-EE-vpr collapses to 4×(1+⌈|R|min{m1,m2,…,mt}⌉). To the best of our knowledge, LP-EE-vpr is the first algorithm with proven performance guarantee for real-time scheduling of sporadic tasks with resource sharing on t-type heterogeneous multiprocessors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Black-blood MR coronary vessel wall imaging may become a powerful tool for the quantitative and noninvasive assessment of atherosclerosis and positive arterial remodeling. Although dual-inversion recovery is currently the gold standard, optimal lumen-to-vessel wall contrast is sometimes difficult to obtain, and the time window available for imaging is limited due to competing requirements between blood signal nulling time and period of minimal myocardial motion. Further, atherosclerosis is a spatially heterogeneous disease, and imaging at multiple anatomic levels of the coronary circulation is mandatory. However, this requirement of enhanced volumetric coverage comes at the expense of scanning time. Phase-sensitive inversion recovery has shown to be very valuable for enhancing tissue-tissue contrast and for making inversion recovery imaging less sensitive to tissue signal nulling time. This work enables multislice black-blood coronary vessel wall imaging in a single breath hold by extending phase-sensitive inversion recovery to phase-sensitive dual-inversion recovery, by combining it with spiral imaging and yet relaxing constraints related to blood signal nulling time and period of minimal myocardial motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a numerical approach, we explore wave-induced fluid flow effects in partially saturated porous rocks in which the gas-water saturation patterns are governed by mesoscopic heterogeneities associated with the dry frame properties. The link between the dry frame properties and the gas saturation is defined by the assumption of capillary pressure equilibrium, which in the presence of heterogeneity implies that neighbouring regions can exhibit different levels of saturation. To determine the equivalent attenuation and phase velocity of the synthetic rock samples considered in this study, we apply a numerical upscaling procedure, which permits to take into account mesoscopic heterogeneities associated with the dry frame properties as well as spatially continuous variations of the pore fluid properties. The multiscale nature of the fluid saturation is taken into account by locally computing the physical properties of an effective fluid, which are then used for the larger-scale simulations. We consider two sets of numerical experiments to analyse such effects in heterogeneous partially saturated porous media, where the saturation field is determined by variations in porosity and clay content, respectively. In both cases we also evaluate the seismic responses of corresponding binary, patchy-type saturation patterns. Our results indicate that significant attenuation and modest velocity dispersion effects take place in this kind of media for both binary patchy-type and spatially continuous gas saturation patterns and in particular in the presence of relatively small amounts of gas. The numerical experiments also show that the nature of the gas distribution patterns is a critical parameter controlling the seismic responses of these environments, since attenuation and velocity dispersion effects are much more significant and occur over a broader saturation range for binary patchy-type gas-water distributions. This analysis therefore suggests that the physical mechanisms governing partial saturation should be accounted for when analysing seismic data in a poroelastic framework. In this context, heterogeneities associated with the dry frame properties, which do not play important roles in wave-induced fluid flow processes per se, should be taken into account since they may determine the kind of gas distribution pattern taking place in the porous rock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Huntington's disease (HD) is a monogenic neurodegenerative disease that affects the efferent neurons of the striatum. The protracted evolution of the pathology over 15 to 20 years, after clinical onset in adulthood, underscores the potential of therapeutic tools that would aim at protecting striatal neurons. Proteins with neuroprotective effects in the adult brain have been identified, among them ciliary neurotrophic factor (CNTF), which protected striatal neurons in animal models of HD. Accordingly, we have carried out a phase I study evaluating the safety of intracerebral administration of this protein in subjects with HD, using a device formed by a semipermeable membrane encapsulating a BHK cell line engineered to synthesize CNTF. Six subjects with stage 1 or 2 HD had one capsule implanted into the right lateral ventricle; the capsule was retrieved and exchanged for a new one every 6 months, over a total period of 2 years. No sign of CNTF-induced toxicity was observed; however, depression occurred in three subjects after removal of the last capsule, which may have correlated with the lack of any future therapeutic option. All retrieved capsules were intact but contained variable numbers of surviving cells, and CNTF release was low in 13 of 24 cases. Improvements in electrophysiological results were observed, and were correlated with capsules releasing the largest amount of CNTF. This phase I study shows the safety, feasibility, and tolerability of this gene therapy procedure. Heterogeneous cell survival, however, stresses the need for improving the technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glioblastoma (GBM) is a morphologically heterogeneous tumor type with a median survival of only 15 months in clinical trial populations. However, survival varies greatly among patients. As part of a central pathology review, we addressed the question if patients with GBM displaying distinct morphologic features respond differently to combined chemo-radiotherapy with temozolomide. Morphologic features were systematically recorded for 360 cases with particular focus on the presence of an oligodendroglioma-like component and respective correlations with outcome and relevant molecular markers. GBM with an oligodendroglioma-like component (GBM-O) represented 15% of all confirmed GBM (52/339) and was not associated with a more favorable outcome. GBM-O encompassed a pathogenetically heterogeneous group, significantly enriched for IDH1 mutations (19 vs. 3%, p = 0.003) and EGFR amplifications (71 vs. 48%, p = 0.04) compared with other GBM, while co-deletion of 1p/19q was found in only one case and the MGMT methylation frequency was alike (47 vs. 46%). Expression profiles classified most of the GBM-O into two subtypes, 36% (5/14 evaluable) as proneural and 43% as classical GBM. The detection of pseudo-palisading necrosis (PPN) was associated with benefit from chemotherapy (p = 0.0002), while no such effect was present in the absence of PPN (p = 0.86). In the adjusted interaction model including clinical prognostic factors and MGMT status, PPN was borderline nonsignificant (p = 0.063). Taken together, recognition of an oligodendroglioma-like component in an otherwise classic GBM identifies a pathogenetically mixed group without prognostic significance. However, the presence of PPN may indicate biological features of clinical relevance for further improvement of therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study wave-induced fluid flow effects in porous rocks partially saturated with gas and water, where the saturation patterns are governed by mesoscopic heterogeneities associated with the dry frame properties. The link between the dry frame properties and the gas saturation is defined by the assumption of capillary pressure equilibrium, which in the presence of heterogeneity implies that neighboring regions can exhibit different levels of saturation. In order to determine the equivalent attenuation and phase velocity of the synthetic rock samples considered in this study, we apply a numerical upscaling procedure, which permits to take into account mesoscopic heterogeneities associated with the dry frame properties as well as spatially continuous variations of the pore fluid properties. We consider numerical experiments to analyze such effects in heterogeneous partially saturated porous media, where the saturation field is determined by realistic variations in porosity. Our results indicate that the spatially continuous nature of gas saturation inherent to this study is a critical parameter controlling the seismic response of these environments, which in turn suggests that the physical mechanisms governing partial saturation should be accounted for when analyzing seismic data in a poro-elastic context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micas are commonly used in Ar-40/Ar-39 thermochronological studies of variably deformed rocks yet the physical basis by which deformation may affect radiogenic argon retention in mica is poorly constrained. This study examines the relationship between deformation and deformation-induced microstructures on radiogenic argon retention in muscovite, A combination of furnace step-heating and high-spatial resolution in situ UV-laser ablation Ar-40/Ar-39 analyses are reported for deformed muscovites sampled from a granitic pegmatite vein within the Siviez-Mischabel Nappe, western Swiss Alps (Penninic domain, Brianconnais unit). The pegmatite forms part of the Variscan (similar to 350 Ma) Alpine basement and exhibits a prominent Alpine S-C fabric including numerous mica `fish' that developed under greenschist facies metamorphic conditions, during the dominant Tertiary Alpine tectonic phase of nappe emplacement. Furnace step-heating of milligram quantities of separated muscovite grains yields an Ar-40/Ar-39 age spectrum with two distinct staircase segments but without any statistical plateau, consistent with a previous study from the same area. A single (3 X 5 mm) muscovite porphyroclast (fish) was investigated by in situ UV-laser ablation. A histogram plot of 170 individual Ar-40/Ar-39 UV-laser ablation ages exhibit a range from 115 to 387 Ma with modes at approximately 340 and 260 Ma. A variogram statistical treatment of the (40)Ad/Ar-39 results reveals ages correlated with two directions; a highly correlated direction at 310 degrees and a lesser correlation at 0 degrees relative to the sense of shearing. Using the highly correlated direction a statistically generated (Kriging method) age contour map of the Ar-40/Ar-39 data reveals a series of elongated contours subparallel to the C-surfaces which where formed during Tertiary nappe emplacement. Similar data distributions and slightly younger apparent ages are recognized in a smaller mica fish. The observed intragrain age variations are interpreted to reflect the partial loss of radiogenic argon during Alpine (similar to 35 Ma) greenschist facies metamorphism. One-dirnensional diffusion modelling results are consistent with the idea that the zones of youngest apparent age represent incipient shear band development within the mica porphyroclasts, thus providing a network of fast diffusion pathways. During Alpine greenschist facies metamorphism the incipient shear bands enhanced the intragrain loss of radiogenic argon. The structurally controlled intragrain age variations observed in this investigation imply that deformation has a direct control on the effective length scale for argon diffusion, which is consistent with the heterogeneous nature of deformation. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High systemic levels of IP-10 at onset of combination therapy for chronic hepatitis C mirror intrahepatic mRNA levels and predict a slower first phase decline in HCV RNA as well as poor outcome. Recently several genome wide association studies have revealed that single nucleotide polymorphisms (SNPs) on chromosome19 within proximity of IL28B predict spontaneous clearance of HCV infection and as therapeutic outcome among patients infected with HCV genotype 1, with three such SNPs being highly predictive: rs12979860, rs12980275, and rs8099917. In the present study, we correlated genetic variations in these SNPs from 253 Caucasian patients with pretreatment plasma levels of IP-10 and HCV RNA throughout therapy within a phase III treatment trial (HCV-DITTO). The favorable genetic variations in all three SNPs (CC, AA, and TT respectively) was significantly associated with lower baseline IP-10 (CC vs. CT/TT at rs12979860: median 189 vs. 258 pg/mL, P=0.02, AA vs. AG/GG at rs12980275: median 189 vs. 258 pg/mL, P=0.01, TT vs. TG/GG at rs8099917: median 224 vs. 288 pg/mL, P=0.04), were significantly less common among HCV genotype 1 infected patients than genotype 2/3 (P<0.0001, P<0.0001, and P=0.01 respectively) and had significantly higher baseline viral load than carriers of the SNP genotypes (6.3 vs. 5.9 log 10 IU/mL, P=0.0012, 6.3 vs. 6.0 log 10 IU/mL, P=0.026, and 6.3 vs. 5.8 log 10 IU/mL, P=0.0003 respectively). Among HCV genotype 1 infected homozygous or heterogeneous carriers of the favorable C, A, and T genotypes, lower baseline IP-10 was significantly associated with greater decline in HCV-RNA day 0-4, which translated into increased rates of achieving SVR among homozygous patients with baseline IP-10 below 150 pg/mL (85%, 75%, and 75% respectively). In a multivariate analysis among genotype 1 infected patients, both baseline IP-10 and the SNPs were significant independent predictors of SVR. Conclusion: Baseline plasma IP-10 is significantly associated with IL28B variations, and augments the predictiveness of the first phase decline in HCV RNA and final treatment outcome.