590 resultados para Heteroclinic Orbits
Resumo:
We derive the Cramer-Rao Lower Bound (CRLB) for the estimation of initial conditions of noise-embedded orbits produced by general one-dimensional maps. We relate this bound`s asymptotic behavior to the attractor`s Lyapunov number and show numerical examples. These results pave the way for more suitable choices for the chaotic signal generator in some chaotic digital communication systems. (c) 2006 Published by Elsevier Ltd.
Resumo:
We show experimentally that under certain conditions the chaotic intensity dynamics of an optically pumped NH3 bidirectional ring laser could be well described in terms of Shil'nikov homoclinic orbits and chaos. We found that the mechanism that resulted in this kind of dynamics of the laser is the competition between effects caused by the mode interaction between the forward and the backward modes of the laser and by the intrinsic single-mode dynamics of the interacting modes. (C) 1997 Optical Society of America.
Resumo:
Using the continuation method we prove that the circular and the elliptic symmetric periodic orbits of the planar rotating Kepler problem can be continued into periodic orbits of the planar collision restricted 3–body problem. Additionally, we also continue to this restricted problem the so called “comets orbits”.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We consider an autonomous differential system in Rn with a periodic orbit and we give a new method for computing the characteristic multipliers associated to it. Our method works when the periodic orbit is given by the transversal intersection of n ¡ 1 codimension one hypersurfaces and is an alternative to the use of the first order variational equations. We apply it to study the stability of the periodic orbits in several examples, including a periodic solution found by Steklov studying the rigid body dynamics.
Resumo:
We study the families of periodic orbits of the spatial isosceles 3-body problem (for small enough values of the mass lying on the symmetry axis) coming via the analytic continuation method from periodic orbits of the circular Sitnikov problem. Using the first integral of the angular momentum, we reduce the dimension of the phase space of the problem by two units. Since periodic orbits of the reduced isosceles problem generate invariant two-dimensional tori of the nonreduced problem, the analytic continuation of periodic orbits of the (reduced) circular Sitnikov problem at this level becomes the continuation of invariant two-dimensional tori from the circular Sitnikov problem to the nonreduced isosceles problem, each one filled with periodic or quasi-periodic orbits. These tori are not KAM tori but just isotropic, since we are dealing with a three-degrees-of-freedom system. The continuation of periodic orbits is done in two different ways, the first going directly from the reduced circular Sitnikov problem to the reduced isosceles problem, and the second one using two steps: first we continue the periodic orbits from the reduced circular Sitnikov problem to the reduced elliptic Sitnikov problem, and then we continue those periodic orbits of the reduced elliptic Sitnikov problem to the reduced isosceles problem. The continuation in one or two steps produces different results. This work is merely analytic and uses the variational equations in order to apply Poincar´e’s continuation method.
Resumo:
We prove the existence of infinitely many symmetric periodic orbits for a regularized rhomboidal five-body problem with four small masses placed at the vertices of a rhombus centered in the fifth mass. The main tool for proving the existence of such periodic orbits is the analytic continuation method of Poincaré together with the symmetries of the problem. © 2006 American Institute of Physics.
Resumo:
Contingut del Pòster presentat al congrés New Trends in Dynamical Systems
Resumo:
The existence of a new class of inclined periodic orbits of the collision restricted three-body problem is shown. The symmetric periodic solutions found are perturbations of elliptic kepler orbits and they exist only for special values of the inclination and are related to the motion of a satellite around an oblate planet
Resumo:
PURPOSE: To prospectively evaluate the accuracy and reliability of "freehand" posttraumatic orbital wall reconstruction with AO (Arbeitsgemeinschaft Osteosynthese) titanium mesh plates by using computer-aided volumetric measurement of the bony orbits. METHODS: Bony orbital volume was measured in 12 patients from coronal CT scan slices using OsiriX Medical Image software. After defining the volumetric limits of the orbit, the segmentation of the bony orbital region of interest of each single slice was performed. At the end of the segmentation process, all regions of interest were grouped and the volume was computed. The same procedure was performed on both orbits, and thereafter the volume of the contralateral uninjured orbit was used as a control for comparison. RESULTS: In all patients, the volume data of the reconstructed orbit fitted that of the contralateral uninjured orbit with accuracy to within 1.85 cm3 (7%). CONCLUSIONS: This preliminary study has demonstrated that posttraumatic orbital wall reconstruction using "freehand" bending and placement of AO titanium mesh plates results in a high success rate in re-establishing preoperative bony volume, which closely approximates that of the contralateral uninjured orbit.
Resumo:
This paper deals with the relationship between the periodic orbits of continuous maps on graphs and the topological entropy of the map. We show that the topological entropy of a graph map can be approximated by the entropy of its periodic orbits.