965 resultados para Hepatic insufficiency
Resumo:
Atualmente, a insuficiência/deficiência de vitamina D tem sido considerada um problema de saúde pública no mundo todo, em razão de suas implicações no desenvolvimento de diversas doenças, entre elas, o diabetes melito tipo 2 (DMT2), a obesidade e a hipertensão arterial. A deficiência de vitamina D pode predispor à intolerância à glicose, a alterações na secreção de insulina e, assim, ao desenvolvimento do DMT2. Esse possível mecanismo ocorre em razão da presença do receptor de vitamina D em diversas células e tecidos, incluindo células-β do pâncreas, no adipócito e no tecido muscular. Em indivíduos obesos, as alterações do sistema endócrino da vitamina D, caracterizada por elevados níveis de PTH e da 1,25(OH)2D3 são responsáveis pelo feedback negativo da síntese hepática de 25-OHD3 e também pelo maior influxo de cálcio para o meio intracelular, que pode prejudicar a secreção e a sensibilidade à insulina. Na hipertensão, a vitamina D pode atuar via sistema renina-angiotensina e também na função vascular. Há evidências de que a 1,25(OH)2D3 inibe a expressão da renina e bloqueia a proliferação da célula vascular muscular lisa. Entretanto, estudos prospectivos e de intervenção em humanos que comprovem a efetividade da adequação do status da vitamina D sob o aspecto "prevenção e tratamento de doenças endocrinometabólicas" são ainda escassos. Mais pesquisas são necessárias para se garantir o benefício máximo da vitamina D nessas situações.
Resumo:
CONTEXT: Hepatic fibrosis occurs in response to several aggressive agents and is a predisposing factor in cirrhosis. Hepatotrophic factors were shown to stimulate liver growth and to restore the histological architecture of the liver. They also cause an improvement in liver function and accelerate the reversion of fibrosis before it progresses to cirrhosis. OBJECTIVE: To test the effects of hepatic fibrosis solution composed by amino acids, vitamins, glucose, insulin, glucagon and triiodothyronine on hepatic fibrosis in rats. METHODS: Fibrosis was induced in rats by gastric administration of dimethylnitrosamine (10 mg/kg) for 5 weeks. After liver biopsy, the rats received either hepatotrophic factors solution (40 mg/kg/day) or saline solution for 10 days by intraperitoneal injection. Blood samples and liver fragments were collected for hepatic function analysis, standard histopathology evaluation, and morphometric collagen quantification. RESULTS: Rats in the hepatotrophic factors group showed a decrease of the histopathological components of fibrosis and an increase of their hepatic mass (12.2%). There was no development of neoplasic lesions in both groups. Compared with the saline group, the hepatotrophic factors group also had a decrease of blood levels of hepatic-lesion markers (AST, ALT) and a decrease of collagen content in the portal spaces (31.6%) and perisinusoidal spaces (42.3%), as well as around the hepatic terminal vein (57.7%). Thus, hepatotrophic factors administration in the portal blood promoted a regenerative hepatic response, with an overall reduction of the volumetric density of collagen, improved hepatic function, and a general improvement in the histopathological aspects of fibrosis. CONCLUSION: Taken together, these results suggest the potential therapeutic use of this hepatotrophic factors solution to treat chronic liver diseases.
Resumo:
The use of aluminum silicates for decontaminating animal feed containing aflatoxins has yielded encouraging results in chicken and turkey poults. In contrast, very few studies have tested these substances in aquaculture. In this work, we investigated the efficacy of a trout diet containing 0.5% hydrated sodium aluminosilicate (HSAS) in protecting against contamination with aflatoxin B1. Trout were reared on these diets for one year and the experimental groups were examined monthly for hepatic presumptive preneoplastic and neoplastic lesions. Regardless of the presence of HSAS, all of the fish that received aflatoxin in their diet have shown hepatic lesions indicative of a carcinogenic process, presenting also the development of cancer in some fish. The concentration of HSAS used in this study was ineffective in preventing the onset of hepatic lesions induced by aflatoxin B1 in rainbow trout.
Resumo:
Ten cattle and 10 buffalo were divided into 2 groups (control [n = 8] and experimental [n = 12]) that received daily administration of copper. Three hepatic biopsies and blood samples were performed on days 0, 45, and 105. The concentration of hepatic copper was determined by spectrophotometric atomic absorption, and the activities of aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) were analyzed. Regression analyses were done to verify the possible existing relationship between enzymatic activity and concentration of hepatic copper. Sensitivity, specificity, accuracy, and positive and negative predictive values were determined. The serum activities of AST and GGT had coefficients of determination that were excellent predictive indicators of hepatic copper accumulation in cattle, while only GGT serum activity was predictive of hepatic copper accumulation in buffalo. Elevated serum GGT activity may be indicative of increased concentrations of hepatic copper even in cattle and buffalo that appear to be clinically healthy. Thus, prophylactic measures can be implemented to prevent the onset of a hemolytic crisis that is characteristic of copper intoxication.
Resumo:
Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-kappa B activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, I kappa B and NF-kappa B) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2 alpha phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue.
Resumo:
During rat hepatocarcinogenesis preneoplastic lesions (PNL) emerge which may persist (pPNL) and be sites of progress to cancer or suffer remodeling (rPNL) tending to disappear. Cellular and molecular mechanisms involved in both phenotypes are not sufficiently elucidated. pPNL and rPNL cellular proliferation and apoptosis were evaluated in rats submitted to the resistant hepatocyte (RH) model, and an adjusted growth index (AGI) was established. p53, Bcl-2, and NF-kappa B p65 subunit expression was evaluated by immunohistochemistry in pPNL and rPNL. p65 expression and NF-kappa B activation was evaluated by Western blot assays in whole livers. A lower number of BrdU-stained hepatocyte nuclei/mm(2) and higher number of apoptotic bodies (AB) per mm(2) were observed in remodeling compared to pPNL. Cytoplasmic p53 accumulation is related to increased hepatocarcinoma malignancy. We observed that 71.3% pPNL and 25.4% rPNL (P < 0.05) presented p53 staining in the cytoplasm. Similarly, 67.7% pPNL and 23.1 % rPNL (P < 0.05) presented increased Bcl-2 staining. Thirty-two percent pPNL and 15.6% rPNL (P < 0.05) presented p65 staining. Compared to normal rats, increase (P < 0.05) of hepatic p65 expression and NF-kappa B activation in rats submitted to the RH model was observed. in agreement to previous studies hepatic pPNL and rPNL differ regarding cell proliferation and apoptosis. Moreover, persistence and remodeling involve differences in p53, Bcl-2, and NF-kappa B pathways. These data point to molecular pathways that may direct preneoplastic lesions to spontaneously regress or to progress to cancer.
Resumo:
The well established rat hepatocarcinogen N-nitrosopytrolidine (NPYR, 1) requires metabolic activation to DNA adducts to express its carcinogenic activity. Among the NPYR-DNA adducts that have been identified, the cyclic 7,8-butanoguanine adduct 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido[2,1-f]purine-4(3H)-one (6) has been quantified using moderately sensitive methods, but its levels have never been compared to those of other DNA adducts of NPYR in rat hepatic DNA. Therefore, in this study, we developed a sensitive new LC-ESI-MS/MS-SRM method for the quantitation of adduct 6 and compared its levels to those of several other NPYR-DNA adducts formed by different mechanisms. The new method was shown to be accurate and precise, with good recoveries and low fmol detection limits. Rats were treated with NPYR by gavage at doses of 46, 92, or 184 mg/kg body weight and sacrificed 16 h later. Hepatic DNA was isolated and analyzed for NPYR-DNA adducts. Adduct 6 was by far the most prevalent, with levels ranging from about 900-3000 mu mol/mol Gua and responsive to dose. Levels of adducts formed from crotonaldehyde, a metabolite of NPYR, were about 0.2-0.9 mu mol/mol dGuo, while those of adducts resulting from reaction with DNA of tetrahydrofuranyl-like intermediates were in the range of 0.01-4 mu mol/mol deoxyribonucleoside. The results of this study demonstrate that, among typical NPYR-DNA adducts, adduct 6 is easily the most abundant in hepatic DNA. Since previous studies have shown that it can be detected in the urine of NPYR-treated rats, the results suggest that it is a potential candidate as a biomarker for assessing human exposure to and metabolic activation of NPYR.
Resumo:
Background & Aims: Nonalcoholic steatohepatitis (NASH) is a chronic liver disease that occasionally progresses to cirrhosis but usually has a benign course. The aim of this study was to investigate the role of the hemochromatosis mutation Cys282Tyr in development of the mild hepatic iron overload found in some patients with NASH and its association with hepatic damage in these patients. Methods: Fifty-one patients with NASH were studied. The presence of the Cys282Tyr mutation was tested in all patients, and the data were analyzed with respect to the histological grade of steatosis, inflammation, Perls' staining, hepatic iron concentration (HIC), and serum iron indices. Results: Thirty-one percent of patients with NASH were either homozygous or heterozygous for the Cys282Tyr mutation. This mutation was significantly associated with Perls' stain grade (P < 0.005), HIC (P < 0.005), and transferrin saturation percentage (P < 0.005) but not with serum ferritin levels. Linear regression analysis showed that increased hepatic iron (Perls' stain or HIC) had the greatest association with the severity of fibrosis (P < 0.0001). Conclusions: The Cys282Tyr mutation is responsible for most of the mild iron overload found in NASH and thus has a significant association with hepatic damage in these patients. Heterozygosity for the hemochromatosis gene mutation therefore cannot always be considered benign.
Resumo:
In this work the in-situ perfused rat liver has been used to examine the effect of changing the protein content of the perfusate on the hepatic extraction of O-acyl esters of salicylic acid. The hepatic availability (F) of these solutes was studied at a flow-rate of 30 mt min(-1) with perfusate albumin concentrations of 0, 2, and 4% w/v. The hepatic availability of the esters was shown to decrease with increasing carbon-chain length in the O-acyl group; for all the esters the hepatic availability increased with increasing albumin concentration in the perfusate. The dispersion-model-derived efficiency number (R-N) Of the esters was shown to increase with increasing lipophilicity and decrease with increasing albumin concentration in the perfusate. The unbound fraction (f(u),) of the esters decreased with lipophilicity. R-N/f(u), for acetylsalicylic acid remained relatively constant as the albumin concentration was increased. However, R-N/f(u), for n-pentanoyl- and n-hexanoylsalicylic acids increased significantly as albumin concentration increased from 0% to 4%. Thus, for the more lipophilic solutes (n-pentanoyl- and n-hexanoylsalicylic acids) the presence of albumin apparently facilitates the uptake of unbound solute relative to acetylsalicylic acid.
Resumo:
Predicted area under curve (AUC), mean transit time (MTT) and normalized variance (CV2) data have been compared for parent compound and generated metabolite following an impulse input into the liver, Models studied were the well-stirred (tank) model, tube model, a distributed tube model, dispersion model (Danckwerts and mixed boundary conditions) and tanks-in-series model. It is well known that discrimination between models for a parent solute is greatest when the parent solute is highly extracted by the liver. With the metabolite, greatest model differences for MTT and CV2 occur when parent solute is poorly extracted. In all cases the predictions of the distributed tube, dispersion, and tasks-in-series models are between the predictions of the rank and tube models. The dispersion model with mixed boundary conditions yields identical predictions to those for the distributed tube model (assuming an inverse gaussian distribution of tube transit times). The dispersion model with Danckwerts boundary conditions and the tanks-in series models give similar predictions to the dispersion (mixed boundary conditions) and the distributed tube. The normalized variance for parent compound is dependent upon hepatocyte permeability only within a distinct range of permeability values. This range is similar for each model but the order of magnitude predicted for normalized variance is model dependent. Only for a one-compartment system is the MIT for generated metabolite equal to the sum of MTTs for the parent compound and preformed metabolite administered as parent.
Resumo:
DNA mismatch repair is an important mechanism involved in maintaining the fidelity of genomic DNA. Defective DNA mismatch repair is implicated in a variety of gastrointestinal and other turners; however, its role in hepatocellular carcinoma (HCC) has not been assessed. Formalin-fixed, paraffin-embedded archival pathology tissues from 46 primary liver tumors were studied by microdissection and microsatellite analysis of extracted DNA to assess the degree of microsatellite instability, a marker of defective mismatch repair, and to determine the extent and timing of allelic loss of two DNA mismatch repair genes, human Mut S homologue-2 (hMSH2) and human Mut L homologue-1 (hMLH1), and the tumor suppressor genes adenomatous polyposis coli gene (APC), p53, and DPC4. Microsatellite instability was detected in 16 of the tumors (34.8%). Loss of heterozygosity at microsatellites linked to the DNA mismatch repair genes, hMSH2 and/or hMLH1, was found in 9 cases (19.6%), usually in association with microsatellite instability. Importantly, the pattern of allelic loss was uniform in 8 of these 9 tumors, suggesting that clonal loss had occurred. Moreover, loss at these loci also occurred in nonmalignant tissue adjacent to 4 of these tumors, where it was associated with marked allelic heterogeneity. There was relatively infrequent loss of APC, p53, or DPC4 loci that appeared unrelated to loss of hMSH2 or hMLH1 gene loci. Loss of heterozygosity at hMSH2 and/or hMLH1 gene loci, and the associated microsatellite instability in premalignant hepatic tissues suggests a possible causal role in hepatic carcinogenesis in a subset of hepatomas.
Resumo:
1 The hepatic disposition and metabolite kinetics of a homologous series of O-acyl (acetyl, propionyl, butanoyl, pentanoyl, hexanoyl and octanoyl) esters of salicylic acid (C2SA, C3SA, C4SA, C5SA, C6SA and C8SA, respectively) was determined using a single-pass, in-sills rat liver preparation. 2 The hepatic venous outflow profiles for the parent esters and the generated metabolite, salicylic acid (SA) were analysed by HPLC. Non-parametric moments analysis was used to determine the area under the curve (AUC'), mean transit time (MTT) and normalized variance (CV2) for the parent esters and generated SA. 3 Pregenerated SA ([C-14]-salicylic acid) was injected into each liver with the parent ester to determine its distribution characteristics. 4 The overall recovery of ester plus metabolite was 89% of the ester dose injected and independent of the ester carbon number, suggesting that ester extraction was due to hepatic metabolism to salicylic acid. 5 The metabolite AUC' value increased directly with the lipophilicity of the parent ester (from 0.12 for C2SA to 0.95 for C8SA). By contrast, the parent AUC' decreased with the lipophilicity (from 0.85 for C2SA to zero for C8SA). The metabolite MTT value also showed a trend to increase with the lipophilicity of the parent ester (from 15.72 s for C3SA to 61.97 s for C8SA). However, the parent MTT value shows no significant change across the series. 6 The two-compartment dispersion model was used to derive the kinetic parameters for parent ester, pregenerated SA and generated SA. Consequently, these parameters were used to estimate the values of AUG', MITT and CV2 for the parent ester and metabolite. The moments values obtained using the two-compartment dispersion model show similar trends to the corresponding moments values obtained from the outflow profiles using a non-parametric approach. 7 The more lipophilic aspirin analogues are more confined to the portal circulation after oral administration than aspirin due to their more extensive hepatic elimination avoiding systemic prostacyclin inhibition. Given that aspirin's selectivity as an anti-thrombotic agent has been postulated to be due to selective anti-platelet effects in the portal circulation, the more lipophilic and highly extracted analogues are potentially more selective anti-thrombotic agents than aspirin.
Resumo:
The hepatic disposition and metabolite kinetics of a homologous series of diflunisal O-acyl esters (acetyl, butanoyl, pentanoyl, anti hexanoyl) were determined using a single-pass perfused in situ rat liver preparation. The experiments were conducted using 2% BSA Krebs-Henseleit buffer (pH 7.4), and perfusions were performed at 30 mL/min in each liver. O-Acyl esters of diflunisal and pregenerated diflunisal were injected separately into the portal vein. The venous outflow samples containing the esters and metabolite diflunisal were analyzed by high performance liquid chromatography (HPLC). The normalized outflow concentration-time profiles for each parent ester and the formed metabolite, diflunisal, were analyzed using statistical moments analysis and the two-compartment dispersion model. Data (presented as mean +/- standard error for triplicate experiments) was compared using ANOVA repeated measures, significance level P < 0.05. The hepatic availability (AUC'), the fraction of the injected dose recovered in the outflowing perfusate, for O-acetyldiflunisal (C2D = 0.21 +/- 0.03) was significantly lower than the other esters (0.34-0.38). However, R-N/f(u), the removal efficiency number R-N divided by the unbound fraction in perfusate f(u), which represents the removal efficiency of unbound ester by the liver, was significantly higher for the most lipophilic ester (O-hexanoyldiflunisal, C6D = 16.50 +/- 0.22) compared to the other members of the series (9.57 to 11.17). The most lipophilic ester, C6D, had the largest permeability surface area (PS) product (94.52 +/- 38.20 mt min-l g-l liver) and tissue distribution value VT (35.62 +/- 11.33 mL g(-1) liver) in this series. The MTT of these O-acyl esters of diflunisal were not significantly different from one another. However, the metabolite diflunisal MTTs tended to increase with the increase in the parent ester lipophilicity (11.41 +/- 2.19 s for C2D to 38.63 +/- 9.81 s for C6D). The two-compartment dispersion model equations adequately described the outflow profiles for the parent esters and the metabolite diflunisal formed from the O-acyl esters of diflunisal in the liver.
Resumo:
It is recognized that vascular dispersion in the liver is a determinant of high first-pass extraction of solutes by that organ. Such dispersion is also required for translation of in-vitro microsomal activity into in-vivo predictions of hepatic extraction for any solute. We therefore investigated the relative dispersion of albumin transit times (CV2) in the livers of adult and weanling rats and in elasmobranch livers. The mean and normalized variance of the hepatic transit time distribution of albumin was estimated using parametric non-linear regression (with a correction for catheter influence) after an impulse (bolus) input of labelled albumin into a single-pass liver perfusion. The mean +/- s.e. of CV2 for albumin determined in each of the liver groups were 0.85 +/- 0.20 (n = 12), 1.48 +/- 0.33 (n = 7) and 0.90 +/- 0.18 (n = 4) for the livers of adult and weanling rats and elasmobranch livers, respectively. These CV2 are comparable with that reported previously for the dog and suggest that the CV2 Of the liver is of a similar order of magnitude irrespective of the age and morphological development of the species. It might, therefore, be justified, in the absence of other information, to predict the hepatic clearances and availabilities of highly extracted solutes by scaling within and between species livers using hepatic elimination models such as the dispersion model with a CV2 of approximately unity.