973 resultados para Hemilabile ligand
Resumo:
The title pendent-arm macrocyclic hexaamine ligand binds stereospecifically in a hexadentate manner, and we report here its isomorphous Ni-II and Zn-II complexes (both as perchlorate salts), namely (cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine-kappa(6)N)nickel(II) diperchlorate, [Ni(C12H30N6)](ClO4)(2), and (cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine-kappa(6)N)zinc(II) diperchlorate, [Zn(C-12 H30N6)](ClO4)(2). Distortion of the N-M-N valence angles from their ideal octahedral values becomes more pronounced with increasing metal-ion size and the present results are compared with other structures of this ligand.
Resumo:
In previous studies we have shown that the sensitivity of melanoma cell lines to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)induced apoptosis was determined largely by the level of expression of death receptor TRAIL receptor 2 on the cells. However, approximately one-third of melanoma cell lines were resistant to TRAIL, despite expression of high levels of TRAIL receptor 2. The present studies show that these cell lines had similar levels of TRAIL-induced activated caspase-3 as the TRAIL-sensitive lines, but the activated caspase-3 did not degrade substrates downstream of caspase-3 [inhibitor of caspase-activated DNase and poly(ADP-ribose) polymerase]. This appeared to be due to inhibition of caspase-3 by X-linked inhibitor of apoptosis (XIAP) because XIAP was bound to activated caspase-3, and transfection of XIAP into TRAIL-sensitive cell lines resulted in similar inhibition of TRAIL-induced apoptosis. Conversely, reduction of XIAP levels by overexpression of Smac/ DIABLO in the TRAIL-resistant melanoma cells was associated with the appearance of catalytic activity by caspase-3 and increased TRAIL-induced apoptosis. TRAIL was shown to cause release of Smac/DIABLO from mitochondria, but this release was greater in TRAIL-sensitive cell lines than in TRAIL-resistant cell lines and was associated with downregulation of XIAP levels. Furthermore, inhibition of Smac/DIABLO release by overexpression of Bcl-2 inhibited down-regulation of XIAP levels. These results suggest that Smac/DIABLO release from mitochondria and its binding to XIAP are an alternative pathway by which TRAIL induces apoptosis of melanoma, and this pathway is dependent on the release of activated caspase-3 from inhibition by XIAP and possibly other inhibitor of apoptosis family members.
Resumo:
The electron transfer protein rubredoxin from Clostridium pasteurianum contains an Fe(S-Cys)(4) active site. Mutant proteins C9G, C9A, C42G and C42A, in which cysteine ligands are replaced by non-ligating Gly or Ala residues, have been expressed in Escherichia coli. The C42A protein expresses with a (Fe2S2)-S-III cluster in place. In contrast, the other proteins are isolated in colourless forms, although a (Fe2S2)-S-III cluster may be assembled in the C42G protein via incubation with Fe-III and sulfide. The four mutant proteins were isolated as stable mononuclear Hg-II forms which were converted to unstable mononuclear Fe-III preparations that contain both holo and apo protein. The Fe-III systems were characterized by metal analysis and mass spectrometry and by electronic, electron paramagnetic resonance, X-ray absorption and resonance Raman spectroscopies. The dominant Fe-III form in the C9A preparation is a Fe(S-Cys)(3)(OH) centre, similar to that observed previously in the C6S mutant protein. Related centres are present in the proteins NifU and IscU responsible for assembly and repair of iron-sulfur clusters in both prokaryotic and eukaryotic cells. In addition to Fe(S-Cys)(3)(OH) centres, the C9G, C42G and C42A preparations contain a second four-coordinate Fe-III form in which a ligand appears to be supplied by the protein chain. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-0020355-1.
Resumo:
A dendritic cell (DC) imbalance with a marked deficiency in CD4(-)8(+) DC occurs in non-obese diabetic (NOD) mice, a model of human autoimmune diabetes mellitus. Using a NOD congenic mouse strain, we find that this CD4(-)8(+) DC deficiency is associated with a gene segment on chromosome 4, which also encompasses non-MHC diabetes susceptibility loci. Treatment of NOD mice with fms-like tyrosine kinase 3 ligand (FL) enhances the level of CD4(-)8(+) DC, temporarily reversing the DC subtype imbalance. At the same time, fms-like tryosine kinase 3 ligand treatment blocks early stages of the diabetogenic process and with appropriately timed administration can completely prevent diabetes development. This points to a possible clinical use of FL to prevent autoimmune disease.
Resumo:
The current study aims to ascertain the fate of the melanocyte stimulating hormone (MSH) receptor and its ligand [Nle(4), D-Phe(7)]alpha-MsH (NDP-MSH) following binding to murine B16 melanoma cells. Cells were incubated with [I-125]-NDP-MSH for up to 180 min and binding, internalization and degradation determined. Intracellular trafficking of the radiolabel was assessed !using Percoll density gradient centrifugation of homogenized cells. Receptor down-regulation and receptor mRNA levels were also measured over 96 hr after exposure to 1 mu M ligand. NDP-MSH accumulation increased with time in a temperature-dependent manner and was inhibited by excess peptide. The ligand was rapidly internalized and translocated to the lysosomal compartment where it was degraded. Internalization was accompanied by a loss or down-regulation of cell surface receptors, suggesting internalization of the NDP-MSH-receptor complex. No recycling of the receptors between the plasma membrane and intracellular compartments could be detected in this cell-hue. Approximately 15% of the surface receptors were resistant to down-regulation, possibly indicating receptor heterogeneity. Down-regulation persisted ibr up to 96 hr and was accompanied by a decrease in MSH receptor mRNA levels 48 hr after treatment. However, before this time, transcript levels were the same in treated and control cells. In contrast to what was seen with NDP-MSH, cell surface receptors removed with trypsin wc:re rapidly replaced. These results show that NDP-MSH not only induced MSH receptor :internalization but also inhibited receptor turnover, resulting in a prolonged down-regulation. It is concluded that, in B16 cells, the MSH receptor undergoes ligand-dependent internalization, resulting in a prolonged down-regulation. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
CD40-1igand (CD40-L), a member of the tumour necrosis family of transmembrane glycoproteins, is rapidly and transiently expressed on the surface of recently activated CD4+ T cells. CD40 is expressed by B cells, monocytes and dendritic cells. Interactions between CD40-L and CD40 induce B cell proliferation, differentiation, immunoglobulin production and isotype switching as well as monocyte activation and dendritic cell differentiation. Since the rheumatoid synovium is characterized by T cell activation, B cell immunoglobulin production, monocyte cytokine production and dendritic cell differentiation, the expression and function of CD40-L in RA was examined. RA synovial fluid (SF) T ceils expressed CD40-L mRNA, as well as low level cell surface CD40-L. A subset of CD4+ RA synovial fluid T cells could express cell surface CD40-L within 15 rain of in vitro activation even in the presence of cycloheximide. CD40-L expressed by RA SF T cells was functional, since RA SF T cells, but not normal PB T cells, stimulated CD40-L dependent B cell immunoglobulin production in the absence of in vitro T cell activation. These data indicate that SF T cells express functionally significant levels of surface CD40-L, and have the potential for rapid upregulation of surface expression from preformed CD40-L stores. Thus, CD40-L is likely to play a central role in the perpetuation of RA by induction of Ig synthesis, cytokine production and dendritic cell differentiation. Moreover, the data provide important evidence of recent activation of RA synovial T cells. Of importance, blockade of CD40-L may prove highly effective as a disease modifying therapy for RA.
Resumo:
CD40 ligand (CD40-L), a member of the tumor necrosis family of transmembrane glycoproteins, is rapidly and transiently expressed on the surface of recently activated CD4+ T cells. Interactions between CD40-L and CD40 induce B cell immunoglobulin production as well as monocyte activation and dendritic cell differentiation. Since these features characterize rheumatoid arthritis (RA), the expression and function of CD40-L in RA was examined. Freshly isolated RA peripheral blood (PB) and synovial fluid (SF)T cells expressed CD40-L mRNA as well as low level cell surface CD40-L. An additional subset of CD4+ RA SF T cells upregulated cell surface CD40-L expression within 15 min of in vitro activation even in the presence of cycloheximide, but soluble CD40-L was not found in SF. CD40-L expressed by RA T cells was functional, since RA PB and SF T cells but not normal PB T cells stimulated CD40-L-dependent B cell immunoglobulin production and dendritic cell IL-12 expression in the absence of prolonged in vitro T cell activation. In view of the diverse proinflammatory effects of CD40-L, this molecule is likely to play a central role in the perpetuation of rheumatoid synovitis. Of importance, blockade of CD40-L may prove highly effective as a disease modifying therapy for RA.
Resumo:
Ligands for peroxisome proliferator-activated receptor gamma (PPAR-gamma), such as 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) have been implicated as a new class of anti-inflammatory compounds with possible clinical applications. Based on this concept, this investigation was designed to determine the effect of 15d-PGJ(2)-mediated activation of PPAR-gamma ligand on neutrophil migration after an inflammatory stimulus and clarify the underlying molecular mechanisms using a mouse model of peritonitis. Our results demonstrated that 15d-PGJ(2) administration decreases leukocyte rolling and adhesion to the inflammated mesenteric tissues by a mechanism dependent on NO. Specifically, pharmacological inhibitors of NO synthase remarkably abrogated the 15d-PGJ(2)-mediated suppression of neutrophil migration to the inflammatory site. Moreover, inducible NOS(-/-) mice were not susceptible to 15d-PGJ(2)-mediated suppression of neutrophil migration to the inflammatory sites when compared with their wild type. In addition, 15d-PGJ(2)-mediated suppression of neutrophil migration appeared to be independent of the production of cytokines and chemokines, since their production were not significantly affected in the carrageenan-injected peritoneal cavities. Finally, up-regulation of carrageenan-triggered ICAM-I expression in the mesenteric microcirculation vessels was abrogated by pretreatment of wild-type mice with 15d-PGJ(2), whereas 15d-PGJ(2) inhibited F-actin rearrangement process in neutrophils. Taken together these findings demonstrated that 15d-PGJ(2) suppresses inflammation-initiated neutrophil migration in a mechanism dependent on NO production in mesenteric tissues.
Resumo:
PD-1 and PD-L1 can be involved in tumor escape, and little is known about the role of these molecules in oral tumors or pre-malignant lesions. In the present study, we investigated the expression of PD-1 and PD-L1 in the blood and lesion samples of patients with actinic cheilitis (AC) and oral squamous cell carcinoma (OSCC). Our results showed that lymphocytes from peripheral blood and tissue samples exhibited high expression of PD-1 in both groups analyzed. Patients with AC presented higher percentage as well as the absolute numbers of CD4(+)PD-1(+) and CD8(+)PD-1(+) lymphocytes in peripheral blood mononuclear cells (PBMC) than healthy individuals, while patients with OSCC presented an increased frequency of CD8(+)PD1(+) in PBMC when compared with controls. On the other hand, increased frequency of CD4(+) and CD8(+) T cells expressing PD-1(+) accumulate in samples from OSCC, and the expression of PD-L1 was intense in OSCC and moderate in AC lesion sites. Lower levels of IFN-gamma and higher levels of TGF-beta were detected in OSCC samples. Our data demonstrate that PD-1 and PD-L1 molecules are present in blood and samples of AC and OSCC patients. Further studies are required to understand the significance of PD-1 and PD-L1 in oral tumors microenvironment.