939 resultados para Helix-loop-helix


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dynamic properties of helix 12 in the ligand binding domain of nuclear receptors are a major determinant of AF-2 domain activity. We investigated the molecular and structural basis of helix 12 mobility, as well as the involvement of individual residues with regard to peroxisome proliferator-activated receptor alpha (PPARalpha) constitutive and ligand-dependent transcriptional activity. Functional assays of the activity of PPARalpha helix 12 mutants were combined with free energy molecular dynamics simulations. The agreement between the results from these approaches allows us to make robust claims concerning the mechanisms that govern helix 12 functions. Our data support a model in which PPARalpha helix 12 transiently adopts a relatively stable active conformation even in the absence of a ligand. This conformation provides the interface for the recruitment of a coactivator and results in constitutive activity. The receptor agonists stabilize this conformation and increase PPARalpha transcription activation potential. Finally, we disclose important functions of residues in PPARalpha AF-2, which determine the positioning of helix 12 in the active conformation in the absence of a ligand. Substitution of these residues suppresses PPARalpha constitutive activity, without changing PPARalpha ligand-dependent activation potential.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is an integral membrane protein that has been only poorly characterized to date. It is believed to comprise a cytosolic N-terminal part, a central part harboring four transmembrane passages, and a cytosolic C-terminal part. Here, we describe an amphipathic alpha-helix at the C terminus of NS4B (amino acid residues 229 to 253) that mediates membrane association and is involved in the formation of a functional HCV replication complex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We recently identified the winged-helix transcription factor Trident and described its expression pattern in synchronized fibroblasts. We have now studied Trident expression in cell lines, differentiating thymocytes and in lymphocytes derived from peripheral blood. During T cell differentiation, expression peaked in the actively dividing immature single positive cells. In peripheral blood lymphocytes, expression of Trident mRNA was absent, but could be induced upon stimulation with mitogens in vitro. These observations imply a function for Trident in dividing lymphocytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pseudomonas aeruginosa has a pair of distinct ornithine carbamoyltransferases. The anabolic ornithine carbamoyltransferase encoded by the argF gene catalyzes the formation of citrulline from ornithine and carbamoylphosphate. The catabolic ornithine carbamoyltransferase encoded by the arcB gene promotes the reverse reaction in vivo; although this enzyme can be assayed in vitro for citrulline synthesis, its unidirectionality in vivo is determined by its high concentration at half maximum velocity for carbamoylphosphate ([S]0.5) and high cooperativity toward this substrate. We have isolated mutant forms of catabolic ornithine carbamoyltransferase catalyzing the anabolic reaction in vivo. The corresponding arcB mutant alleles on a multicopy plasmid specifically suppressed an argF mutation of P. aeruginosa. Two new mutant enzymes were obtained. When methionine 321 was replaced by isoleucine, the mutant enzyme showed loss of homotropic cooperativity at physiological carbamoylphosphate concentrations. Substitution of glutamate 105 by lysine resulted in a partial loss of the sigmoidal response to increasing carbamoylphosphate concentrations. However, both mutant enzymes were still sensitive to the allosteric activator AMP and to the inhibitor spermidine. These results indicate that at least two residues of catabolic ornithine carbamoyltransferase are critically involved in positive carbamoylphosphate cooperativity: glutamate 105 (previously known to be important) and methionine 321. Mutational changes in either amino acid will affect the geometry of helix H2, which contains several residues required for carbamoylphosphate binding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. It induces a specific membrane rearrangement, designated membranous web, that serves as a scaffold for the HCV replication complex. However, the mechanisms underlying membranous web formation are poorly understood. Based on fluorescence resonance energy transfer (FRET) and confirmatory coimmunoprecipitation analyses, we provide evidence for an oligomerization of NS4B in the membrane environment of intact cells. Several conserved determinants were found to be involved in NS4B oligomerization, through homotypic and heterotypic interactions. N-terminal amphipathic ?-helix AH2, comprising amino acids 42 to 66, was identified as a major determinant for NS4B oligomerization. Mutations that affected the oligomerization of NS4B disrupted membranous web formation and HCV RNA replication, implying that oligomerization of NS4B is required for the creation of a functional replication complex. These findings enhance our understanding of the functional architecture of the HCV replication complex and may provide new angles for therapeutic intervention. At the same time, they expand the list of positive-strand RNA virus replicase components acting as oligomers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biotechnology has been recognized as the key strategic technology for industrial growth. The industry is heavily dependent on basic research. Finland continues to rank in the top 10 of Europe's most innovative countries in terms of tax-policy, education system, infrastructure and the number of patents issued. Regardless of the excellent statistical results, the output of this innovativeness is below acceptable. Research on the issues hindering the output creation has already been done and the identifiable weaknesses in the Finland's National Innovation system are the non-existent growth of entrepreneurship and the missing internationalization. Finland is proven to have all the enablers of the innovation policy tools, but is lacking the incentives and rewards to push the enablers, such as knowledge and human capital, forward. Science Parks are the biggest operator in research institutes in the Finnish Science and Technology system. They exist with the purpose of speeding up the commercialization process of biotechnology innovations which usually include technological uncertainty, technical inexperience, business inexperience and high technology cost. Innovation management only internally is a rather historic approach, current trend drives towards open innovation model with strong triple helix linkages. The evident problems in the innovation management within the biotechnology industry are examined through a case study approach including analysis of the semi-structured interviews which included biotechnology and business expertise from Turku School of Economics. The results from the interviews supported the theoretical implications as well as conclusions derived from the pilot survey, which focused on the companies inside Turku Science Park network. One major issue that the Finland's National innovation system is struggling with is the fact that it is technology driven, not business pulled. Another problem is the university evaluation scale which focuses more on number of graduates and short-term factors, when it should put more emphasis on the cooperation success in the long-term, such as the triple helix connections with interaction and knowledge distribution. The results of this thesis indicated that there is indeed requirement for some structural changes in the Finland's National innovation system and innovation policy in order to generate successful biotechnology companies and innovation output. There is lack of joint output and scales of success, lack of people with experience, lack of language skills, lack of business knowledge and lack of growth companies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study examines the potential of Urtica dioica as an ecologically relevant species for use in ecotoxicological testing. It is prevalent in degraded ecosystems and is a food source for invertebrates. Urtica dioica grown in hydroponic solutions containing from less than 0.003 to 5.7 mg Cd/L or from 0.02 to 41.9 mg Zn/L accumulated metals resulting in leaf tissue concentrations in the range of 0.10 to 24.9 mg Cd/kg or 22.5 to 2,772.0 mg Zn/kg. No toxicological effects were apparent except at the highest concentrations tested, suggesting that this species may be an important pathway for transfer of metals to primary plant consumers. Helix aspersa and Lumbricus terrestris were fed the Cd- and Zn-rich leaves of U. dioica for six and four weeks, respectively. Cadmium and Zn body load increased with increasing metal concentration in the leaves (p < 0.001). Ratios of invertebrate metal concentration to leaf metal concentration were in the range of 1:0.03 to 1:1.4 for Cd and 1:0.2 to 1:2.8 for Zn in H. aspersa and 1:0.002 to 1:3.9 for Cd and 1:0.2 to 1:8.8 for Zn in L. terrestris. Helix aspersa Cd and Zn tissue concentrations (15.5 and 1,220.2 mg/kg, respectively) were approximately threefold those in L. terrestris when both species were fed nettle leaves with concentrations of approximately 23 mg Cd/ kg and 3,400 mg Zn/kg. Models demonstrate that L. terrestris Cd tissue concentrations (r(2) = 0.74, p < 0.001) and H. aspersa Zn tissue concentrations (r(2) = 0.69, p < 0.001) can be estimated from concentrations of Cd and Zn within the leaves of U. dioica and suggest that reasonably reproducible results can be obtained using these species for ecotoxicological testing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A single-crystal X-ray diffraction study of the terminally protected tetrapeptide Boc-beta-Ala-Aib-Leu-Aib-OMe 1 (Aib: alpha-aminoisobutyric acid; beta-Ala: beta-Alanine) reveals that it adopts a new type of double turn structure which self-associates to form a unique supramolecular helix through intermolecular hydrogen bonds. Scanning electron microscopic studies show that peptide 1 exhibits amyloid-like fibrillar morphology in the solid state. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Single helical [(CuL)-L-I]ClO4.12CH(2)Cl(2) (L=1:2 condensate of benzil dihydrazone and 2-acetylpyridine) unfolds and coils up in CH2Cl2 solution to generate double helical [(Cu2L2)-L-I](2+).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Helices and sheets are ubiquitous in nature. However, there are also some examples of self-assembling molecules forming supramolecular helices and sheets in unnatural systems. Unlike supramolecular sheets there are a very few examples of peptide sub-units that can be used to construct supramolecular helical architectures using the backbone hydrogen bonding functionalities of peptides. In this report we describe the design and synthesis of two single turn/bend forming peptides (Boc-Phe-Aib-Ile-OMe 1 and Boc-Ala-Leu-Aib-OMe 2) (Aib: alpha-aminoisobutyric acid) and a series of double-turn forming peptides (Boc-Phe-Aib-IIe-Aib-OMe 3, Boc-Leu-Aib-Gly-Aib-OMe 4 and Boc-gamma-Abu-Aib-Leu-Aib-OMe 5) (gamma-Abu: gamma-aminobutyric acid). It has been found that, in crystals, on self-assembly, single turn/bend forming peptides form either a supramolecular sheet (peptide 1) or a supramolecular helix (peptide 2). unlike self-associating double turn forming peptides, which have only the option of forming supramolecular helical assemblages. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The copper(I) complex of L, the 1:2 condensate of benzil dihydrazone and 2-formylpyridine, exists as single, helical [CuL](+) and double helical [Cu2L2](2+) in dichloromethane solution but crystallizes only as the double helicate [Cu2L2](ClO4)(2). In contrast, earlier [New J Chem, 27 (2003) 193] it has been found that with L', the 1:2 condensate of benzil dihydrazone and 2-acetylpyridine, only the single helical monomeric species [CuL'](+) is isolable as solid. This contrasting behaviour of the copper(I) complexes of L and L' are scrutinised here by density functional calculations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Single crystal X-ray diffraction studies reveal that three hexapeptides with general formula Boc-Ile-Aib-Xx-Ile-Aib-Yy-OMe, where Xx and Yy are Leu in peptide I, Len and Phe in peptide II, and Phe and Leu in peptide III, respectively, adopt equivalent conformations that can be described as mixed 3(10)/alpha-helice with two 4 -> 1 and two 5 -> 1 intramolecular N-H center dot center dot center dot O=C H-bonds. The peptides do not generate any helixterminating Schellman motif despite having Aib at the penultimate position from C-terminus. In the crystalline state, the helices are packed in head-to-tail fashion through intermolecular hydrogen bonds to create supramolecular helical structures. The CD Studies of the three hexapeptides in acetonitrile indicate that they are folded in well-developed 3(10)-helical structures. NMR studies of peptide I in CDCl3 also suggest the formation of a homogeneous 3 m-helical structure. The field emission scanning electron microscopic (FE-SEM) images of peptide 11 in the solid state reveal a non-twisted ribbon-like morphology, which is formed through lateral association of non-twisted filaments. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Single crystal X-ray diffraction studies reveal that the incorporation of meta-amino benzoic acid in the middle of a helix forming hexapeptide sequence such as in peptide I Boc-Ile(1)-Aib(2)-Val(3)-m-ABA(4)-Ile(5)-Aib(6)-Leu(7)-OMe (Aib: alpha-amino isobutyric acid: m-ABA: meta-amino benzoic acid) breaks the helix propagation to produce a turn-linker-turn (T-L-T) foldamer in the solid state. In the crystalline state two conformational isomers of peptide I self-assemble in antiparallel fashion through intermolecular hydrogen bonds and aromatic pi-pi interactions to form a molecular duplex. The duplexes are further interconnected through intermolecular hydrogen bonds to form a layer of peptides. The layers are stacked one on top of the other through van der Waals interactions to form hydrophilic channels filled with solvent methanol. (C) 2009 Elsevier B.V. All rights reserved.