956 resultados para Heat of formation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formation of silicon carbide in the Acheson process was studied using a mass transfer model which has been developed in this study. The century old Acheson process is still used for the mass production of silicon carbide. A heat resistance furnace is used in the Acheson process which uses sand and petroleum coke as major raw materials.: It is a highly energy intensive process. No mass transfer model is available for this process. Therefore, a mass transfer model has been developed to study the mass transfer aspects of the process along with heat transfer. The reaction kinetics of silicon carbide formation has been taken from the literature. It has been shown that reaction kinetics has a reasonable influence on the process efficiency. The effect of various parameters on the process such as total gas pressure, presence of silicon carbide in the initial charge, etc. has been studied. A graphical user interface has also been developed for the Acheson process to make the computer code user friendly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallic Ru has been found to coexist separately with CaO, RuO2, and the interoxide phases, Ca2RuO4, Ca3Ru2O7, and CaRuO3, present along the pseudobinary system CaO-RuO2. The standard Gibbs energies of formation (Df((ox))G(o)) of the three calcium ruthenates from their component oxides have been measured in the temperature range 925-1350 K using solid-state cells with yttria-stabilized zirconia as the electrolyte and Ru+RuO2 as the reference electrode. The standard Gibbs energies of formation (Deltaf((ox))G(o)) of the compounds can be represented by Ca2RuO4:Deltaf((ox))G(o)/J mol(-1)=-38,340-6.611 T (+/-120), Ca3Ru2O7 : Df((ox))G(o)/J mol(-1)=-75,910-11.26 T (+/-180), and CaRuO3 : Deltaf((ox))G(o)/J mol(-1)=-35,480-3.844 T(+/-70). The data for Ca2RuO4 corresponds to the stoichiometric composition, which has an orthorhombic structure, space group Pbca, with short c axis ("S'' form). The structural features of the ternary oxides responsible for their mild entropy stabilization are discussed. A three-dimensional oxygen potential diagram for the system Ca-Ru-O is developed as a function of composition and temperature from the results obtained. Using the Neumann-Kopp rule to estimate the heat capacity of the ternary oxides relative to their constituent binary oxides, the standard enthalpies of formation of the three calcium ruthenates from the elements and their standard entropies at 298.15 K are evaluated. (C) 2003 The Electrochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standard Gibbs energy of formation of Rh203 at high temperature has been determined recently with high precision. The new data are significantly different from those given in thermodynamic compilations.Accurate values for enthalpy and entropy of formation at 298.15 K could not be evaluated from the new data,because reliable values for heat capacity of Rh2O3 were not available. In this article, a new measurement of the high temperature heat capacity of Rh2O3 using differential scanning calorimetry (DSC) is presented.The new values for heat capacity also differ significantly from those given in compilations. The information on heat capacity is coupled with standard Gibbs energy of formation to evaluate values for standard enthalpy and entropy of formation at 289.15 K using a multivariate analysis. The results suggest a major revision in thermodynamic data for Rh2O3. For example, it is recommended that the standard entropy of Rh203 at 298.15 K be changed from 106.27 J mol-' K-'given in the compilations of Barin and Knacke et al. to 75.69 J mol-' K". The recommended revision in the standard enthalpy of formation is from -355.64 kJ mol-'to -405.53 kJ mol".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the pressing need to meet an ever-increasing energy demand, the combustion systems utilizing fossil fuels have been the major contributors to carbon footprint. As the combustion of conventional energy resources continue to produce significant Green House gas (GHG) emissions, there is a strong emphasis to either upgrade or find an energy-efficient eco-friendly alternative to the traditional hydrocarbon fuels. With recent developments in nanotechnology, the ability to manufacture materials with custom tailored properties at nanoscale has led to the discovery of a new class of high energy density fuels containing reactive metallic nanoparticles (NPs). Due to the high reactive interfacial area and enhanced thermal and mass transport properties of nanomaterials, the high heat of formation of these metallic fuels can now be released rapidly, thereby saving on specific fuel consumption and hence reducing GHG emissions. In order to examine the efficacy of nanofuels in energetic formulations, it is imperative to first study their combustion characteristics at the droplet scale that form the fundamental building block for any combustion system utilizing liquid fuel spray. During combustion of such multiphase, multicomponent droplets, the phenomenon of diffusional entrapment of high volatility species leads to its explosive boiling (at the superheat limit) thereby leading to an intense internal pressure build-up. This pressure upsurge causes droplet fragmentation either in form of a microexplosion or droplet puffing followed by atomization (with formation of daughter droplets) featuring disruptive burning. Both these atomization modes represent primary mechanisms for extracting the high oxidation energies of metal NP additives by exposing them to the droplet flame (with daughter droplets acting as carriers of NPs). Atomization also serves as a natural mechanism for uniform distribution and mixing of the base fuel and enhancing burning rates (due to increase in specific surface area through formation of smaller daughter droplets). However, the efficiency of atomization depends on the thermo-physical properties of the base fuel, NP concentration and type. For instance, at dense loading NP agglomeration may lead to shell formation which would sustain the pressure upsurge and hence suppress atomization thereby reducing droplet gasification rate. Contrarily, the NPs may act as nucleation sites and aid boiling and the radiation absorption by NPs (from the flame) may lead to enhanced burning rates. Thus, nanoadditives may have opposing effects on the burning rate depending on the relative dominance of processes occurring at the droplet scale. The fundamental idea in this study is to: First, review different thermo-physical processes that occur globally at the droplet and sub-droplet scale such as surface regression, shell formation due to NP agglomeration, internal boiling, atomization/NP transport to flame zone and flame acoustic interaction that occur at the droplet scale and second, understand how their interaction changes as a function of droplet size, NP type, NP concentration and the type of base fuel. This understanding is crucial for obtaining phenomenological insights on the combustion behavior of novel nanofluid fuels that show great promise for becoming the next-generation fuels. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A great deal of data on the heats of formation of various hydrates has been compiled i n the J.A.N.A.F. and other tables such as the National Bureau of Standards circulars. Comparison of the heat of f ormation of a hydrate with that of the corresponding anhydrate exposes anomalies i n a surprising number of cases. Some of the results are so discordant that i t is apparent that one or the other value is seriously mistaken. No attempt has been made i n this work to determine which value may be correct, but measurements have been made of the difference between these two values. The procedure adopted has been to dissolve the hydrate and the anhydrate, to achieve the same final concentration of the compound in solution, and so to measure the difference in heats of solution .. Measurements were made at OOC in a modified Bunsen ice calorimeter, well insulated and surrounded by an icewater mixture . The observed differences in heats of solut ion were corrected t o 25°0 by using appropriate heat capacity data. These differences offer a direct measure of the enthalpy involved in binding a mole of water into the crystal structure and so should shed light on the nature of binding involved. The following hydrates were studied : MgS04.nH20 (n = 1,4,7), MnC12.nH20 (n = 1, 2), LiI. nH20 (n = 1,3), MnS04. nH20 (n = 1,4), CaC12. nH20 (n = 2,6) , K2C03.1~H20, LiCl.H20, LiBr.2H20, CdC12.2t H2o, and N2H4eH20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measured oxygen-isotope compositions of 16 siliceous rocks from Deep Sea Drilling Project Sites 463, 464, 465, and 466 (Leg 62). Samples are from deposits that range in age from about 40 to 103 m.y. and that occur at sub-bottom depths of 9 to 461 meters. Mean d18O values range from 28.4 to 36.8 per mil and 36.0 ± 0.3 per mil for quartz-rich and opal-CTrich rocks, respectively. d18O values in chert decrease with increasing sub-bottom depth; the slope of the d18O/depth curve is less steep for Site 464 than for the other sites which indicates that chert at Site 464 formed at higher temperatures than chert at Sites 463, 465, and 466. Temperatures of formation of cherts were 7 to 42°C, using the silica-water fractionation factor of Knauth and Epstein (1976), or 19 to 56°C, using the equation of Clayton et al. (1972). Temperatures in the sediment where the cherts now occur are lower than their isotopically determined temperatures of formation, which means that the cherts record an earlier history when temperatures in the sediment section were greater. Estimated sediment temperatures when the cherts formed are comparable to, but generally slightly lower than, those calculated from Knauth and Epstein's equation. The isotopic composition of cherts is more closely related to environment of formation (diagenetic environment) or paleogeothermal gradients, than to paleoclimates (bottom-water temperatures). Opal-CT-rich rocks may better record paleo-bottom-water temperature. In Leg 62 cherts, better crystallinity of quartz corresponds to lower d18O values; this implies progressively higher temperatures of equilibration between quartz and water during maturation of quartz. The interrelationship of d18O and crystallinity is noted also in continental-margin deposits such as the Monterey Formation - but for higher temperatures. The apparent temperature difference between open-ocean and continental-margin deposits can be explained by the dominant control of temperature on silica transformation in the rapidly deposited continental-margin deposits, whereas time, as well as temperature, has a strong influence on the transformations in open-ocean deposits. Comparisons between the chemistry and d18O values of cherts reveal two apparent trends: both boron and SiO2 increase as d18O increases. However, the correspondence between SiO2 and d18O is only apparent, because the two cherts lowest in SiO2 are also the most deeply buried, so the trend actually reflects depth of burial. The correspondence between boron and d18O supports the conclusion that boron is incorporated in the quartz crystal structure during precipitation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermogravimetry combined with evolved gas mass spectrometry has been used to ascertain the stability of the ‘cave’ mineral brushite. X-ray diffraction shows that brushite from the Jenolan Caves is very pure. Thermogravimetric analysis coupled with ion current mass spectrometry shows a mass loss at 111°C due to loss of water of hydration. A further decomposition step occurs at 190°C with the conversion of hydrogen phosphate to a mixture of calcium ortho-phosphate and calcium pyrophosphate. TG-DTG shows the mineral is not stable above 111°C. A mechanism for the formation of brushite on calcite surfaces is proposed, and this mechanism has relevance to the formation of brushite in urinary tracts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standard free energies of formation of CaO derived from a variety of high-temperature equilibrium measurements made by seven groups of experimentalists are significantly different from those given in the standard compilations of thermodynamic data. Indirect support for the validity of the compiled data comes from new solid-state electrochemical measurements using single-crystal CaF2 and SrF2 as electrolytes. The change in free energy for the following reactions are obtained: CaO + MgF2 --> MgO + CaF2 Delta G degrees = -68,050 -2.47 T(+/-100) J mol(-1) SrO + CaF2 --> SrF2 + CaO Delta G degrees = -35,010 + 6.39 T (+/-80) J mol(-1) The standard free energy changes associated with cell reactions agree with data in standard compilations within +/- 4 kJ mol(-1). The results of this study do not support recent suggestions for a major revision in thermodynamic data for CaO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gibbs energy of formation of V2O3-saturated spinel CoV2O4 has been measured in the temperature range 900–1700 K using a solid state galvanic cell, which can be represented as Pt, Co + CoV2O4 + V2O3/(CaO) ZrO2/Co + CoO, Pt. The standard free energy of formation of cobalt vanadite from component oxides can be represented as CoO (rs) + V2O3 (cor) → CoV2O4 (sp), ΔG° = −30,125 − 5.06T (± 150) J mole−1. Cation mixing on crystallographically nonequivalent sites of the spinel is responsible for the decrease in free energy with increasing temperature. A correlation between “second law” entropies of formation of cubic 2–3 spinels from component oxides with rock salt and corundum structures and cation distribution is presented. Based on the information obtained in this study and trends in the stability of aluminate and chromite spinels, it can be deduced that copper vanadite is unstable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standard Gibbs energy change accompanying the conversion of rare earth oxides to oxysulfides by reaction of rare earth oxides with diatomic sulfur gas has been measured in the temperature range 870 to 1300 K using the solid state cell: Pt/Cu+Cu2S/R2O2S+R2O3‖(CaO)ZrO2‖Ni+NiO, Pt where R=La, Nd, Sm, Gd, Tb, and Dy. The partial pressure of diatomic sulfur over a mixture of rare earth oxide (R2O3) and oxysulfide (R2O2S) is fixed by the dissociation of Cu2S to Cu in a closed system. The buffer mixture of Cu+Cu2S is physically separated from the rare earth oxide and oxysulfide to avoid complications arising from interaction between them. The corresponding equilibrium oxygen partial pressure is measured with an oxide solid electrolyte cell. Gibbs energy change for the conversion of oxide to the corresponding oxysulfide increases monotonically with atomic number of the rare earth element. Second law enthalpy of formation also shows a similar trend. Based on this empirical trend Gibbs energies of formation of oxysulfides of Pr, Eu, Ho, and Er are estimated as a function of temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measured specific heat of normal liquid 3He shows a plateau for 0.15<1 K; below 0.15 K and above 1 K, it rises linearly with temperature. However, the slope on the high-temperature side is very much reduced compared with the free-Fermi-gas value. We explain these features through a microscopic, thermal spin- and density-fluctuation model. The plateau is due to spin fluctuations which have a low characteristic energy in 3He. Because of the low compressibility, the density fluctuations are highly suppressed; this leads to a reduced slope for CV(T) for high temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional QSAR studies for N-4-arylacryloylpiperazin-1-yl-phenyl-oxazolidinones were conducted using TSAR 3.3. The in vitro activities (MICs) of the compounds against Staphylococcus aureus ATCC 25923 exhibited a strong correlation with the prediction made by the model developed in the present study.