47 resultados para Halodule wrigthii


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfated polysaccharides (SP) are widely distributed in animals and seaweeds tissues. These polymers have been studied in light of their important pharmacological activities, such as anticoagulant, antioxidant, antitumoral, anti-inflammatory, and antiviral properties. On other hand, SP potential to synthesize biomaterials like as nanoparticules has not yet been explored. In addition, to date, SP have only been found in six plants and all inhabit saline environments. However, the SP pharmacological plant activities have not been carrying out. Furthermore, there are no reports of SP in freshwater plants. Thus, do SP from marine plants show pharmacological activity? Do freshwater plants actually synthesize SP? Is it possible to synthesize nanoparticles using SP from seaweed? In order to understand this question, this Thesis was divided into tree chapters. In the first chapter a sulfated polysaccharide (SPSG) was successfully isolated from marine plant Halodule wrightii. The data presented here showed that the SPSG is a 11 kDa sulfated heterogalactan contains glucose and xylose. Several assays suggested that the SPSG possessed remarkable antioxidant properties in different in vitro assays and an outstanding anticoagulant activity 2.5-fold higher than that of heparin Clexane® in the aPTT test; in the next chapter using different tools such as chemical and histological analyses, energy-dispersive X-ray analysis (EDXA), gel electrophoresis and infra-red spectroscopy we confirm the presence of sulfated polysaccharides in freshwater plants for the first time. Moreover, we also demonstrate that SP extracted from E. crassipes root has potential as an anticoagulant compound; and in last chapter a fucan, a sulfated polysaccharide, extracted from the brown seaweed was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution for hydrophobic chains of 1H NMR was approximately 93%. SNFfuc-TBa125 in aqueous media had a mean diameter of 123 nm and zeta potential of -38.3 ± 0.74 mV, measured bydynamic light scattering. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0 43.7% at SNFuc concentrations of 0.05 0.5 mg/ mL and RAEC non-tumor cell line proliferation displayed inhibition of 8.0 22.0%. On the other hand, nanogel improved CHO and RAW non-tumor cell line proliferation in the same concentration range. Flow cytometric analysis revealed that this fucan nanogel inhibited 786 cell proliferation through caspase and caspaseindependent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to characterize, for the first time, the benthic invertebrates that inhabit the region of soft bottoms adjacent to the APARC reefs in order to situate them as an important component of infralittoral coastal areas of Northeast Brazil. Soft bottoms areas of APARC corresponds to infralittoral zones vegetated by seagrass Halodule wrightii and unvegetated infralittoral zones, both subjected to substantial hydrodynamic stress. Through scuba diving, biological and sedimentary samples of both habitats were analyzed, with a cylindrical sampler. We identified 6160 individuals belonging to 16 groups and 224 species. The most abundant macrofaunal group was Polychaeta (43%), followed by Mollusca (25%) and Crustacea (14%), what was expected for these environments. In the first chapter, regarding vegetated areas, we tested three hypotheses: the existence of differences in the faunal structure associated with H. wrightii banks submitted to different hydrodynamic conditions; the occurrence of minor temporal variations on the associated macrofauna of banks protected from hydrodynamic stress; and if the diversity of macrofauna is affected by both benthophagous predators and H. wrightii biomass. It was observed that macrofauna associated at the Exposed bank showed differences in structure when comparing the Protected bank, the granulometry of the sediments, that co-varies with the hydrodynamism, was the cause of these variations. The results also pointed to a lower temporal variation in the macrofaunal structure on the Protected bank and a negative relation between macrofaunal and benthophagous fish abundance. At the Exposed bank, a greater faunal diversity was observed, probably due to the higher seagrass biomass. The second chapter compares the vegetated and non-vegetated areas in order to test the hypothesis that due to greater seasonal stability in tropical environments, seagrass structure would act to distinguish the vegetated and non-vegetated areas macrofauna, over time. It was also expected that depositivores were the most representative invertebrates on non-vegetated environments, on the assumption that the seagrass bank would work as a source of debris to adjacent areas, enriching them. Considering all sampling periods, the total macrofauna abundance and diversity were higher in vegetated areas, when compared to non-vegetated ones. Seasonally, the structural complexity provided by Halodule differentiated more clearly the fauna from vegetated and non-vegetated areas, but only at the climatic extremes, i.e. Dry season (extreme climatic stability, with low hydronamism variation) and Rainy season (great hydrodynamism variation and probably vegetated bank burial). Furthermore, the high organic matter levels measured in the sandy banks coincided with an outstanding trophic importance of deposit feeders, proving the debris-carrying hypothesis. The last chapter focused on the non-vegetated areas, where we tested that the hypothesis infaunal halo in tropical reefs depending on local granulometry. In this context, we also tested the hypothesis that benthophagous fish predation would have an effect on the low abundance of macrofaunal groups due to the high hydrographic stress, thus allowing other predatory groups to have greater importance in these environments. Proving the hypothesis, no spatial variation, both on abundance families neither on community structure, occur along distance of the edge reefs. However, we found that complex combinations of physical factors (grain size and organic matter levels originated from local hydronamic conditions) covary with the distance from the reefs and has stronger influence on macrofauna than considered biological factors, such as predation by benthophagous fishes. Based on the main results, this study shows that unconsolidated areas around APARC reefs are noteworthy from an ecological and conservational point of view, as evidenced by the biota-environment and organismal relations, never before described for these areas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increased atmospheric carbon dioxide leads to ocean acidification and carbon dioxide (CO2) enrichment of seawater. Given the important ecological functions of seagrass meadows, understanding their responses to CO2 will be critical for the management of coastal ecosystems. This study examined the physiological responses of three tropical seagrasses to a range of seawater pCO2 levels in a laboratory. Cymodocea serrulata, Halodule uninervis and Thalassia hemprichii were exposed to four different pCO2 treatments (442-1204 µatm) for 2 weeks, approximating the range of end-of-century emission scenarios. Photosynthetic responses were quantified using optode-based oxygen flux measurements. Across all three species, net productivity and energetic surplus (PG:R) significantly increased with a rise in pCO2 (linear models, P < 0.05). Photosynthesis-irradiance curve-derived photosynthetic parameters-maximum photosynthetic rates (P max) and efficiency (alpha) also increased as pCO2 increased (linear models, P < 0.05). The response for productivity measures was similar across species, i.e. similar slopes in linear models. A decrease in compensation light requirement (Ec) with increasing pCO2 was evident in C. serrulata and H. uninervis, but not in T. hemprichii. Despite higher productivity with pCO2 enrichment, leaf growth rates in C. serrulata did not increase, while those in H. uninervis and T. hemprichii significantly increased with increasing pCO2 levels. While seagrasses can be carbon-limited and productivity can respond positively to CO2 enrichment, varying carbon allocation strategies amongst species suggest differential growth response between species. Thus, future increase in seawater CO2 concentration may lead to an overall increase in seagrass biomass and productivity, as well as community changes in seagrass meadows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes seagrass species and percentage cover point-based field data sets derived from georeferenced photo transects. Annually or biannually over a ten year period (2004-2015) data sets were collected using 30-50 transects, 500-800 m in length distributed across a 142 km**2 shallow, clear water seagrass habitat, the Eastern Banks, Moreton Bay, Australia. Each of the eight data sets include seagrass property information derived from approximately 3000 georeferenced, downward looking photographs captured at 2-4 m intervals along the transects. Photographs were manually interpreted to estimate seagrass species composition and percentage cover (Coral Point Count excel; CPCe). Understanding seagrass biology, ecology and dynamics for scientific and management purposes requires point-based data on species composition and cover. This data set, and the methods used to derive it are a globally unique example for seagrass ecological applications. It provides the basis for multiple further studies at this site, regional to global comparative studies, and, for the design of similar monitoring programs elsewhere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"February 1980."