994 resultados para Haitian water laws


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Description based on: 1978.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"In the present work there have been incorporated several papers ... which have been read before the Institution of Civil Engineers; and also the author's articles on 'Stoves' and 'Ventilation,' published in the Encyclopædia metropolitana."--Pref.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Includes indexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this PhD research program is to investigate numerical methods for simulating variably-saturated flow and sea water intrusion in coastal aquifers in a high-performance computing environment. The work is divided into three overlapping tasks: to develop an accurate and stable finite volume discretisation and numerical solution strategy for the variably-saturated flow and salt transport equations; to implement the chosen approach in a high performance computing environment that may have multiple GPUs or CPU cores; and to verify and test the implementation. The geological description of aquifers is often complex, with porous materials possessing highly variable properties, that are best described using unstructured meshes. The finite volume method is a popular method for the solution of the conservation laws that describe sea water intrusion, and is well-suited to unstructured meshes. In this work we apply a control volume-finite element (CV-FE) method to an extension of a recently proposed formulation (Kees and Miller, 2002) for variably saturated groundwater flow. The CV-FE method evaluates fluxes at points where material properties and gradients in pressure and concentration are consistently defined, making it both suitable for heterogeneous media and mass conservative. Using the method of lines, the CV-FE discretisation gives a set of differential algebraic equations (DAEs) amenable to solution using higher-order implicit solvers. Heterogeneous computer systems that use a combination of computational hardware such as CPUs and GPUs, are attractive for scientific computing due to the potential advantages offered by GPUs for accelerating data-parallel operations. We present a C++ library that implements data-parallel methods on both CPU and GPUs. The finite volume discretisation is expressed in terms of these data-parallel operations, which gives an efficient implementation of the nonlinear residual function. This makes the implicit solution of the DAE system possible on the GPU, because the inexact Newton-Krylov method used by the implicit time stepping scheme can approximate the action of a matrix on a vector using residual evaluations. We also propose preconditioning strategies that are amenable to GPU implementation, so that all computationally-intensive aspects of the implicit time stepping scheme are implemented on the GPU. Results are presented that demonstrate the efficiency and accuracy of the proposed numeric methods and formulation. The formulation offers excellent conservation of mass, and higher-order temporal integration increases both numeric efficiency and accuracy of the solutions. Flux limiting produces accurate, oscillation-free solutions on coarse meshes, where much finer meshes are required to obtain solutions with equivalent accuracy using upstream weighting. The computational efficiency of the software is investigated using CPUs and GPUs on a high-performance workstation. The GPU version offers considerable speedup over the CPU version, with one GPU giving speedup factor of 3 over the eight-core CPU implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A computational tool called ``Directional Diffusion Regulator (DDR)'' is proposed to bring forth real multidimensional physics into the upwind discretization in some numerical schemes of hyperbolic conservation laws. The direction based regulator when used with dimension splitting solvers, is set to moderate the excess multidimensional diffusion and hence cause genuine multidimensional upwinding like effect. The basic idea of this regulator driven method is to retain a full upwind scheme across local discontinuities, with the upwind bias decreasing smoothly to a minimum in the farthest direction. The discontinuous solutions are quantified as gradients and the regulator parameter across a typical finite volume interface or a finite difference interpolation point is formulated based on fractional local maximum gradient in any of the weak solution flow variables (say density, pressure, temperature, Mach number or even wave velocity etc.). DDR is applied to both the non-convective as well as whole unsplit dissipative flux terms of some numerical schemes, mainly of Local Lax-Friedrichs, to solve some benchmark problems describing inviscid compressible flow, shallow water dynamics and magneto-hydrodynamics. The first order solutions consistently improved depending on the extent of grid non-alignment to discontinuities, with the major influence due to regulation of non-convective diffusion. The application is also experimented on schemes such as Roe, Jameson-Schmidt-Turkel and some second order accurate methods. The consistent improvement in accuracy either at moderate or marked levels, for a variety of problems and with increasing grid size, reasonably indicate a scope for DDR as a regular tool to impart genuine multidimensional upwinding effect in a simpler framework. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A global numerical model for shallow water flows on the cubed-sphere grid is proposed in this paper. The model is constructed by using the constrained interpolation profile/multi-moment finite volume method (CIP/MM FVM). Two kinds of moments, i.e. the point value (PV) and the volume-integrated average (VIA) are defined and independently updated in the present model by different numerical formulations. The Lax-Friedrichs upwind splitting is used to update the PV moment in terms of a derivative Riemann problem, and a finite volume formulation derived by integrating the governing equations over each mesh element is used to predict the VIA moment. The cubed-sphere grid is applied to get around the polar singularity and to obtain uniform grid spacing for a spherical geometry. Highly localized reconstruction in CIP/MM FVM is well suited for the cubed-sphere grid, especially in dealing with the discontinuity in the coordinates between different patches. The mass conservation is completely achieved over the whole globe. The numerical model has been verified by Williamson's standard test set for shallow water equation model on sphere. The results reveal that the present model is competitive to most existing ones. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is a common knowledge that illegal fishing which includes use of wrong gears, explosives, excessive exploitation of choice stocks, enhancement and stocking of water body and pollution has devastating effects on the critical biomass of fish biodiversity and livelihood activities associated with fishing. Efforts worldwide to arrest these menace are significant because it has been found that illegal fishing has made fishing non sustainable, resulted in poor fishermen catches, and exacerbated the use of illegal gears in an effort to a must catch. Conflict between fisher folk and policies has continued to generate different strategies in the control of illegal fishing. Some of these strategies at regional and National levels include creation and implementation of fisheries laws, fishing edicts, code of conduct for responsible fisheries, policing of inland water bodies, capacity building and capability through training of fishermen, creating necessary awareness, arrest and punishment of offenders. There are also other initiative on conservation and management of freshwater ecosystems which have interrelation with illegal fishing. This paper examines efforts in promoting and boosting the fisheries of Lake Kainji, through creating necessary awareness, campaign visits, radio programmes, gear control, reward systems, integration and diversification of livelihood activities, community based management and policing. It further analyses what is working, problems, and prospect of fisheries laws, the need to integrate factors of political policies, other global initiative on water management for people and nature. Recommendations on strategies including protection of fishing grounds, establishment of catch data base, integration of other intervention as alternative source of income to enhance livelihood, reduce fishing pressure, and capacity building of fisher folks, development of rules and regulations that is community based are highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The slide of unstable sedimentary bodies and their hydraulic effects are studied by numerical means. A two-dimensional fluid mechanics model based on Navier-Stokes equations has been developed considering the sediments and water as a mixture. Viscoplastic and diffusion laws for the sediments have been introduced into the model. The numerical model is validated with an analytical solution for a Bingham flow. Laboratory experiments consisting in the slide of gravel mass have been carried out. The results of these experiments have shown the importance of the sediment rheology and the diffusion. The model parameters are adjusted by trial and error to match the observed “sandflow”.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The eastern Canadian Arctic is home to Canada’s largest Indigenous population, which depends on local freshwater sources for drinking water. However, small watersheds have rarely been analyzed for long-term hydrologic response to changing climate. This study aims to address this issue by examining the Apex River, a small watershed with a long hydroclimatic record, near Iqaluit, Nunavut. Particular emphasis was placed on the long-term changes in climate and river discharge, and the seasonal variability of water sources between two snapshots in time, 1983 and 2013. Long-term hydrological data were obtained from gauge station 10UH002, operated by Environment and Climate Change Canada, and long-term meteorological data were acquired from Environment Canada–operated stations near Iqaluit Airport. Breakpoint analysis suggested that long-term mean annual surface air temperatures have increased since 1994. In contrast, no long-term total precipitation or annual discharge changes were observed. However, river flow initiation and cessation analyses of the Apex River flow season indicates that flow extended into the autumn since the 2000s. The 2013 flow season lasted 44 days longer than the 1983 flow season. Systematic river sampling was undertaken throughout the 2013 thaw season to determine contributing proportions of event (snowmelt or rainfall) and pre-event (baseflow) water to river runoff. Results from the stable isotope hydrograph separation for 2013 were compared to findings for 1983. Snow was the main source of water to the river during the snowmelt period in 1983 and 2013, however baseflow was still an important contributor. Although there was high similarity of water sources early in the season in 1983 and 2013, the two years differed during the autumn. In 2013 there was a high rainfall runoff response that was not present in 1983, suggesting high release of late-season sub-surface water storage and an increased sensitivity to late-season rainfall events in 2013. This research provides insights into the hydrologic response of the Apex River to long-term climatic change, and highlights the need for high-quality precipitation and discharge data for effective long-term hydrological assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of interrelationships between soil structure and its functional properties is complicated by the fact that the quantitative description of soil structure is challenging. Soil scientists have tackled this challenge by taking advantage of approaches such as fractal geometry, which describes soil architectural complexity through a scaling exponent (D) relating mass and numbers of particles/aggregates to particle/aggregate size. Typically, soil biologists use empirical indices such as mean weight diameters (MWD) and percent of water stable aggregates (WSA), or the entire size distribution, and they have successfully related these indices to key soil features such as C and N dynamics and biological promoters of soil structure. Here, we focused on D, WSA and MWD and we tested whether: D estimated by the exponent of the power law of number-size distributions is a good and consistent correlate of MWD and WSA; D carries information that differs from MWD and WSA; the fraction of variation in D that is uncorrelated with MWD and WSA is related to soil chemical and biological properties that are thought to establish interdependence with soil structure (e.g., organic C, N, arbuscular mycorrhizal fungi). We analysed observational data from a broad scale field study and results from a greenhouse experiment where arbuscular mycorrhizal fungi (AMF) and collembola altered soil structure. We were able to develop empirical models that account for a highly significant and large portion of the correlation observed between WSA and MWD but we did not uncover the mechanisms that underlie this correlation. We conclude that most of the covariance between D and soil biotic (AMF, plant roots) and abiotic (C. N) properties can be accounted for by WSA and MWD. This result implies that the ecological effects of the fragmentation properties described by D and generally discussed under the framework of fractal models can be interpreted under the intuitive perspective of simpler indices and we suggest that the biotic components mostly impacted the largest size fractions, which dominate MWD, WSA and the scaling exponent ruling number-size distributions. (C) 2010 Elsevier Ltd. All rights reserved.