174 resultados para Hadrons relativisticos
Resumo:
The combined CERN and Brookhaven heavy ion (H.I.) data supports a scenario of hadron gas which is in chemical and thermal equilibrium at a temperature T of about 140 MeV. Using the Brown-Stachel-Welke model (which gives 150 MeV) we show that in this scenario, the hot nucleons have mass 3 pi T and the pi and rho mesons have masses close to pi T and 2 pi T, respectively. A simple model with pions and quarks supports the co-existence of two phases in these heavy ion experiments, suggesting a second order phase transition. The masses of the pion, rho and the nucleon are intriguingly close to the lattice screening masses.
Resumo:
The experimental mesonic density of states ρmeson(m)≃ρbaryon(m) from 0.9 to 1.3 GeV. In this region the ρmeson fits the ρ(m) deduced for it from discrete bag model states. Beyond 1.3 GeV one can expect exotic mesons. If ρmeson is replaced by the baryon density (as suggested by string model studies [D. Kutasov and N. Seiberg, Nucl. Phys. B 358 (1991) 600; P.G.O. Freund and J.L. Rosner, Phys. Rev. Lett. 68 (1992) 765]), agreement with theory is obtained up to 1.7 GeV. Beyond 1.7 GeV exotic baryons may be expected.
Resumo:
Systems containing simultaneously hadrons and their constituents are most easily described by treating composite hadron field operators on the same kinematical footing as the constituent ones. Introduction of a unitary transformation allows redescription of hadrons by elementary-particle field operators. Transformation of the microscopic Hamiltonian leads to effective Hamiltonians describing all possible processes involving hadrons and their constituents.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Recently Lukierski et al. [1] defined a κ-deformed Poincaré algebra which is characterized by having the energy-momentum and angular momentum sub-algebras not deformed. Further Biedenharn et al. [2] showed that on gauging the κ-deformed electron with the electromagnetic field, one can set a limit on the allowed value of the deformation parameter ∈ ≡ 1/κ < 1 fm. We show that one gets Regge like angular excitations, J, of the mesons, non-strange and strange baryons, with a value of ∈ ∼ 0.082 fm and predict a flattening with J of the corresponding trajectories. The Regge fit improves on including deformation, particularly for the baryon spectrum.
Resumo:
Unpolarized cross sections and double-helicity asymmetries of single-inclusive positive and negative charged hadrons at midrapidity from p + p collisions at root s = 62.4 GeV are presented. The PHENIX measurement of the cross sections for 1.0 < p(T) < 4.5 GeV/c are consistent with perturbative QCD calculations at next-to-leading order in the strong-coupling constant, alpha(s). Resummed pQCD calculations including terms with next-to-leading-log accuracy, yielding reduced theoretical uncertainties, also agree with the data. The double-helicity asymmetry, sensitive at leading order to the gluon polarization in a momentum-fraction range of 0.05 less than or similar to x(gluon) less than or similar to 0.2, is consistent with recent global parametrizations disfavoring large gluon polarization.
Resumo:
A search for long-lived particles is performed using a data sample of 4.7 fb(-1) from proton-proton collisions at a centre-of-mass energy. root s = 7 TeV collected by the ATLAS detector at the LHC. No excess is observed above the estimated background and lower limits, at 95% confidence level, are set on the mass of the long-lived particles in different scenarios, based on their possible interactions in the inner detector, the calorimeters and the muon spectrometer. Long-lived staus in gauge-mediated SUSY-breaking models are excluded up to a mass of 300 GeV for tan beta = 5-20. Directly produced long-lived sleptons are excluded up to a mass of 278 GeV. R-hadrons, composites of gluino (stop, sbottom) and light quarks, are excluded up to a mass of 985 GeV (683 GeV, 612 GeV) when using a generic interaction model. Additionally two sets of limits on R-hadrons are obtained that are less sensitive to the interaction model for R-hadrons. One set of limits is obtained using only the inner detector and calorimeter observables, and a second set of limits is obtained based on the inner detector alone.
Resumo:
An updated search is performed for gluino, top squark, or bottom squark R-hadrons that have come to rest within the ATLAS calorimeter, and decay at some later time to hadronic jets and a neutralino, using 5.0 and 22.9 fb(-1) of pp collisions at 7 and 8 TeV, respectively. Candidate decay events are triggered in selected empty bunch crossings of the LHC in order to remove pp collision backgrounds. Selections based on jet shape and muon system activity are applied to discriminate signal events from cosmic ray and beam-halo muon backgrounds. In the absence of an excess of events, improved limits are set on gluino, stop, and sbottom masses for different decays, lifetimes, and neutralino masses. With a neutralino of mass 100 GeV, the analysis excludes gluinos with mass below 832 GeV (with an expected lower limit of 731 GeV), for a gluino lifetime between 10 mu s and 1000 s in the generic R-hadron model with equal branching ratios for decays to q (q) over bar(chi) over tilde (0) and g (chi) over tilde (0). Under the same assumptions for the neutralino mass and squark lifetime, top squarks and bottom squarks in the Regge R-hadron model are excluded with masses below 379 and 344 GeV, respectively.