985 resultados para Habitat partitioning (Biology)
Resumo:
Seals and humans often target the same food resource, leading to competition. This is of mounting concern with fish stocks in global decline. Grey seals were tracked from southeast Ireland, an area of mixed demersal and pelagic fisheries, and overlap with fisheries on the Celtic Shelf and Irish Sea was assessed. Overall, there was low overlap between the tagged seals and fisheries. However, when we separate active (e.g. trawls) and passive gear (e.g. nets, lines) fisheries, a different picture emerged. Overlap with active fisheries was no different from that expected under a random distribution, but overlap with passive fisheries was significantly higher. This suggests that grey seals may be targeting the same areas as passive fisheries and/or specifically targeting passive gear. There was variation in foraging areas between individual seals suggesting habitat partitioning to reduce intra-specific competition or potential individual specialisation in foraging behaviour. Our findings support other recent assertions that seal/fisheries interactions in Irish waters are an issue in inshore passive fisheries, most likely at the operational and individual level. This suggests that seal population management measures would be unjustifiable, and mitigation is best focused on minimizing interactions at nets.
Resumo:
Plaice (Pleuronectes platessa, L.) and dab (Limanda limanda, L.) are among the most abundant flatfishes in the north-eastern Atlantic region and the dominant species in shallow coastal nursery grounds. With increasing pressures on commercial flatfish stocks in combination with changing coastal environments, better knowledge of population dynamics during all life stages is needed to evaluate variability in year-class strength and recruitment to the fishery. The aim of this research was to investigate the complex interplay of biotic and abiotic habitat components influencing the distribution, density and growth of plaice and dab during the vulnerable juvenile life stage and to gain insight in spatial and temporal differences in nursery habitat quality along the west coast of Ireland. Intraspecific variability in plaice diet was observed at different spatial scales and showed a link with condition, recent growth and morphology. This highlights the effect of food availability on habitat quality and the need to consider small scale variation when attempting to link habitat quality to feeding, growth and condition of juvenile flatfish. There was evidence of trophic, spatial and temporal resource partitioning between juvenile plaice and dab allowing the co-existence of morphologically similar species in nursery grounds. In the limited survey years there was no evidence that the carrying capacity of the studied nursery grounds was reached but spatial and interannual variations in fish growth indicated fluctuating environments in terms of food availability, predator densities, sediment features and physico-chemical conditions. Predation was the most important factor affecting habitat quality for juvenile plaice and dab with crab densities negatively correlated to fish condition whereas shrimp densities were negatively associated with densities of small-sized juveniles in spring. A comparison of proxies for fish growth showed the advantage of Fulton’s K for routine use whereas RNA:DNA ratios proved less powerful when short-term environmental fluctuations are lacking. This study illustrated how distinct sets of habitat features can drive spatial variation in density and condition of juvenile flatfish highlighting the value of studying both variables when modeling habitat requirements. The habitat models generated in this study also provide a powerful tool to predict potential climate and anthropogenic impacts on the distribution and condition of juveniles in flatfish nurseries. The need for effective coastal zone management was emphasized to ensure a sustainable use of coastal resources and successful flatfish recruitment to the fishery.
Resumo:
Biological systems exhibit rich and complex behavior through the orchestrated interplay of a large array of components. It is hypothesized that separable subsystems with some degree of functional autonomy exist; deciphering their independent behavior and functionality would greatly facilitate understanding the system as a whole. Discovering and analyzing such subsystems are hence pivotal problems in the quest to gain a quantitative understanding of complex biological systems. In this work, using approaches from machine learning, physics and graph theory, methods for the identification and analysis of such subsystems were developed. A novel methodology, based on a recent machine learning algorithm known as non-negative matrix factorization (NMF), was developed to discover such subsystems in a set of large-scale gene expression data. This set of subsystems was then used to predict functional relationships between genes, and this approach was shown to score significantly higher than conventional methods when benchmarking them against existing databases. Moreover, a mathematical treatment was developed to treat simple network subsystems based only on their topology (independent of particular parameter values). Application to a problem of experimental interest demonstrated the need for extentions to the conventional model to fully explain the experimental data. Finally, the notion of a subsystem was evaluated from a topological perspective. A number of different protein networks were examined to analyze their topological properties with respect to separability, seeking to find separable subsystems. These networks were shown to exhibit separability in a nonintuitive fashion, while the separable subsystems were of strong biological significance. It was demonstrated that the separability property found was not due to incomplete or biased data, but is likely to reflect biological structure.
Resumo:
We determined microhabitat and diet niche for tadpoles from two ponds in an agricultural landscape. Additionally, we verified the intraspecific variation in resource use, and if diet and microhabitat use were correlated. Tadpoles found in the two ponds differed in microhabitat use, because in the larger pond they explored deeper places far from the margin. There were three groups with high microhabitat niche overlap. In both ponds, plant cover was the best descriptor to explain interspecific variation in microhabitat use. Tadpoles of all species ingested mainly Bacillariophyceae and Trachellomonas however the diet differed intraspecifically in the species from the two ponds. Ten items in the temporary pond and 15 items in the permanent one were ingested by all species; however, the relative abundance of each item differed. Diet similarity was not correlated to similarity in microhabitat use. In this study, diet was as important as microhabitat use to explain resource partitioning.
Resumo:
The aim of the current study was to evaluate a population of Menippe nodiffons in a reef of sabellariid worms, Phragmatopoma lapidosa, with regard to recruitment, population structure and sex ratio. Sampling was carried out each other month from September 1994 up to and including July 1995, on the rocky shores of the Tenorio beach, São Paulo, Brazil. It resulted in 183 individuals, whose average carapace width in this biotope was 9.1 +/- 5.6 m. The animals were grouped in nine size classes and the frequency distribution showed that 80% occupied the three first classes. This means that the polychaete worm colonies are of great importance for the establishment of individuals in the first juvenile stages.
Resumo:
Coexistence of sympatric species is mediated by resource partitioning. Pumas occur sympatrically with jaguars throughout most of the jaguar's range but few studies have investigated space partitioning between both species. Here, camera trapping and occupancy models accounting for imperfect detection were employed in a Bayesian framework to investigate space partitioning between the jaguar and puma in Emas National Park (ENP), central Brazil. Jaguars were estimated to occupy 54.1% and pumas 39.3% of the sample sites. Jaguar occupancy was negatively correlated with distance to water and positively correlated with the amount of dense habitat surrounding the camera trap. Puma occupancy only showed a weak negative correlation with distance to water and with jaguar presence. Both species were less often present at the same site than expected under independent distributions. Jaguars had a significantly higher detection probability at cameras on roads than at off-road locations. For pumas, detection was similar on and off-road. Results indicate that both differences in habitat use and active avoidance shape space partitioning between jaguars and pumas in ENP. Considering its size, the jaguar is likely the competitively dominant of the two species. Owing to its habitat preferences, suitable jaguar habitat outside the park is probably sparse. Consequently, the jaguar population is likely largely confined to the park, while the puma population is known to extend into ENP's surroundings. (C) 2011 Deutsche Gesellschaft fur Saugetierkunde. Published by Elsevier GmbH. All rights reserved.
Resumo:
Assessing the ecological requirements of species coexisting within a community is an essential requisite for developing sound conservation action. A particularly interesting question is what mechanisms govern the stable coexistence of cryptic species within a community, i.e. species that are almost impossible to distinguish. Resource partitioning theory predicts that cryptic species, like other sympatric taxa, will occupy distinct ecological niches. This prediction is widely inferred from eco-morphological studies. A new cryptic long-eared bat species, Plecotus macrobullaris, has been recently discovered in the complex of two other species present in the European Alps, with even evidence for a few mixed colonies. This discovery poses challenges to bat ecologists concerned with planning conservation measures beyond roost protection. We therefore tested whether foraging habitat segregation occurred among the three cryptic Plecotus bat species in Switzerland by radiotracking 24 breeding female bats (8 of each species). We compared habitat features at locations visited by a bat versus random locations within individual home ranges, applying mixed effects logistic regression. Distinct, species-specific habitat preferences were revealed. P. auritus foraged mostly within traditional orchards in roost vicinity, with a marked preference for habitat heterogeneity. P. austriacus foraged up to 4.7 km from the roost, selecting mostly fruit tree plantations, hedges and tree lines. P. macrobullaris preferred patchy deciduous and mixed forests with high vertical heterogeneity in a grassland dominated-matrix. These species-specific habitat preferences should inform future conservation programmes. They highlight the possible need of distinct conservation measures for species that look very much alike.
Resumo:
1. Many species of delphinids co-occur in space and time. However, little is known of their ecological interactions and the underlying mechanisms that mediate their coexistence. 2. Snubfin Orcaella heinsohni, and Indo-Pacific humpback dolphins Sousa chinensis, live in sympatry throughout most of their range in Australian waters. I conducted boat-based surveys in Cleveland Bay, north-east Queensland, to collect data on the space and habitat use of both species. Using Geographic Information Systems, kernel methods and Euclidean distances I investigated interspecific differences in their space use patterns, behaviour and habitat preferences. 3. Core areas of use (50% kernel range) for both species were located close to river mouths and modified habitat such as dredged channels and breakwaters close to the Port of Townsville. Foraging and travelling activities were the dominant behavioural activities of snubfin and humpback dolphins within and outside their core areas. 4. Their representative ranges (95% kernel range) overlapped considerably, with shared areas showing strong concordance in the space use by both species. Nevertheless, snubfin dolphins preferred slightly shallower (1-2 m) waters than humpback dolphins (2-5 m). Additionally, shallow areas with seagrass ranked high in the habitat preferences of snubfin dolphins, whereas humpback dolphins favoured dredged channels. 5. Slight differences in habitat preferences appear to be one of the principal factors maintaining the coexistence of snubfin and humpback dolphins. I suggest diet partitioning and interspecific aggression as the major forces determining habitat selection in these sympatric species.
Resumo:
During the period from 2011 - 2015 with the aim of this study was to systematically review and in particular the revised classification of the Persian Gulf (and the Strait of Hormuz) and to obtain new information about the final confirmed list of fish species of Iranian waters of the Persian Gulf (and Hormuz Strait), samples of museums, surveys and sampling, and comparative study of all available sources and documentation was done. Classification systematic of sharks and batoids and bony fishes. Based on the results, the final list of approved fish of the Persian Gulf (including the Strait of Hormuz and Gulf of Oman border region) are 907 species in 157 families, of which 93 species of fish with 28 cartilaginous families (including 18 families with 60 species and 10 families with 34 species of shark and batoids); and 129 families with 814 species of bony fishes are. The presence of 11 new family with only one representative species in the area include Veliferidae, Zeidae, Sebastidae, Stomiidae, Dalatiidae, Zanclidae, Pempheridae, Lophiidae Kuhliidae, Etmoptridae and Chlorophthalmidae also recently introduced and approved. The two families based Creediidae Clinidae and their larvae samples for newly identified area. 62 families with mono-species and 25 families with more than 10 species are present including Gobiidae (53), Carangide (48), Labride (41), Blenniidae (34), Apogonidae (32) and Lutjanidae (31) of bony fishes, Carcharhinidae (26) of sharks and Dasyatidae (12) in terms of number of species of batoids most families to have their data partitioning. Also, 13 species as well as endemic species introduced the Persian Gulf and have been approved in terms of geographical expansion of the Persian Gulf are unique to the area.Two species of the family Poeciliidae and Cyprinodontidae have species of fresh water to the brackish coastal habitats have found a way;in addition to 11 types of families Carcharhinidae, Clupeidae, Chanidae, Gobidae, Mugilidae, Sparidae also as a species, with a focus on freshwater river basins in the south of the country have been found. In this study, it was found that out of 907 species have been reported from the study area, 294 species (32.4 %) to benthic habitats (Benthic habitats) and 613 species (67.6 %) in pelagic habitats (Pelagic habitats) belong. Coral reefs and rocky habitats in the range of benthic fish (129 species - 14.3 %) and reef associated fishes in the range of pelagic fishes (432 species – 47.8 %), the highest number and percentage of habitat diversity (Species habitats) have been allocated. As well as fish habitats with sea grass and algae beds in benthic habitat (17 species- 1.9 %) and pelagic - Oceanic (Open sea) in the whole pelagic fish (30 species – 3.3 %), the lowest number and percentage of habitat diversity into account. From the perspective of animal geography (Zoogeography) and habitat overlaps and similarities (Habitat overlapping) fish fauna of the Persian Gulf compared with other similar seas (tropical and subtropical, and warm temperate) in the Indian Ocean area - calm on the surface, based on the presence of certain species that the fish fauna of the Persian Gulf to the Red Sea and the Bay of Bengal (East Arabian Sea) compared to other regions in the Indian Ocean (Pacific) is closer (about 50%), and the Mediterranean (East area) and The Hawaiian Islands have the lowest overlap and similarity of habitat and species (about 10%).
Resumo:
The 'dilution effect' (DE) hypothesis predicts that diverse host communities will show reduced disease. The underlying causes of pathogen dilution are complex, because they involve non-additive (driven by host interactions and differential habitat use) and additive (controlled by host species composition) mechanisms. Here, we used measures of complementarity and selection traditionally employed in the field of biodiversity-ecosystem function (BEF) to quantify the net effect of host diversity on disease dynamics of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd). Complementarity occurs when average infection load in diverse host assemblages departs from that of each component species in uniform populations. Selection measures the disproportionate impact of a particular species in diverse assemblages compared with its performance in uniform populations, and therefore has strong additive and non-additive properties. We experimentally infected tropical amphibian species of varying life histories, in single- and multi-host treatments, and measured individual Bd infection loads. Host diversity reduced Bd infection in amphibians through a mechanism analogous to complementarity (sensu BEF), potentially by reducing shared habitat use and transmission among hosts. Additionally, the selection component indicated that one particular terrestrial species showed reduced infection loads in diverse assemblages at the expense of neighbouring aquatic hosts becoming heavily infected. By partitioning components of diversity, our findings underscore the importance of additive and non-additive mechanisms underlying the DE.
Resumo:
Post-settlement processes are a major focus in the study of the dynamics of marine populations and communities. Post-settlement movement of juveniles is an important, but often ignored, process which affects local predator-prey and competitive interactions. We used benthic suction sampling and pitfall traps to examine density and locomotory activity of Carcinus maenas juveniles in different intertidal habitat types in the Rio Mira Estuary, Portugal, to better understand intra-specific interactions in a system where density-dependent processes are known to regulate population dynamics. As expected, significantly higher densities of juvenile shore crabs were found from bare mud compared to densely vegetated habitats. At the time of sampling, small and intermediate stages together outnumbered by far the larger juveniles. Conversely, larger crabs were much more frequent than smaller ones in traps. A locomotory index (LI), i.e. the ratio between crab catch in pitfall traps and their density within their moving range, is proposed as a measure of movement. LI analyses indicated that: (1) movement is an order of magnitude higher in large than small juveniles and much higher in sparse than dense vegetation cover; (2) activity of small juveniles is mostly crepuscular, regardless of vegetation cover; and (3) movement of large juveniles is very limited in dense Zostera patches, but very high in sparsely vegetated areas, during the day and night. These results suggest that small juveniles are relatively protected under dense vegetation cover due to lower mobility of larger crabs, and provide evidence of temporal segregation of activity windows between juvenile crabs of different sizes, which may be a key mechanism to reduce cannibalism and therefore increase the carrying capacity of nursery habitats. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The abundance and species richness of mollusc and crab assemblages were examined in a subtropical mangrove forest in Moreton Bay, Queensland, Australia, which has been disturbed and damaged by the construction of a wooden boardwalk and a path. Sections of the forest immediately adjacent to the boardwalk and path were compared with reference areas to determine whether changes to the small-scale structural complexity within the forest affected the benthic fauna. The disturbed area was characterised by having 65-80% fewer pneumatophores, significantly fewer species and individuals of molluscs, but significantly more species and individuals of crabs than the reference areas. The abundance of mangrove pneumatophores and the attached epiphytic algae were manipulated at two sites to determine whether observed differences in these features could account for the differences in the assemblage of molluscs in the disturbed area of the forest compared with reference areas. Five experimental treatments were used: undisturbed controls, pneumatophore removals (abundance reduced by ca. 65%), epiphytic algal removals (algae removed from ca. 65% of pneumatophores), pneumatophore disturbance controls and algal disturbance controls. The experimental reduction of the abundance of mangrove pneumatophores and the associated epiphytic algae led to significant declines (by as much as 83%) in the number of molluscs utilising the substratum in the modified plots. There was no significant difference in the abundance of molluscs in the pneumatophore and algal removal plots suggesting any effect was primarily related to removal of the epiphytic algae from the surface of the pneumatophores. The responses by the biota to the changes in the physical environment demonstrate that even relatively small-scale modifications to the physical structure of subtropical mangrove forests can lead to significant effects on the diversity and abundance of macrobenthic organisms in these habitats. Such modifications have the potential to cause cascading effects at higher trophic levels with a deterioration in the value of these habitats as nursery and feeding grounds. Future efforts at conservation of these estuarine environments must focus on the prevention or reduction of modifications to the physical structure and integrity of the system, rather than just on the prevention of loss of entire patches of habitat. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The genus Cyrtopodium comprises about 42 species distributed from southern Florida to northern Argentina. Cyrtopodium polyphyllum occurs on rocks or in sandy soils, in restinga vegetation along the Brazilian coast. It flowers during the wet season and its inflorescences produce a high number of resupinate yellow flowers. Cyrtopodium polyphyllum offers no rewards to its pollinators, but mimics the yellow, reward-producing flowers of nearby growing Stigmaphyllon arenicola (oil) and Crotalaria vitellina (nectar) individuals. Several species of bee visit flowers of C. polyphyllum, but only two species of Centris (Centris tarsata and Centris labrosa) act as pollinators. Visits to flowers of C. polyphyllum were scarce and, as a consequence, low-fruit set was recorded under natural conditions. Such low-fruit production contrasts with the number of fruits each plant bears after manual pollination, suggesting deficient pollen transfer among plants. C. polyphyllum is self-compatible and has a high-fruit set in both manual self- and cross-pollinated flowers. Furthermore, fruits (2%) are formed by self-pollination assisted by rain. This facultative self-pollination mechanism is an important strategy to provide reproductive assurance to C. polyphyllum as rainfall restricts the foraging activity of its pollinating bees. Fruits derived from treatments and under natural conditions had a similar high rate of potentially viable seed. Moreover, these seeds had a low polyembryony rate, which did not exceed 5%. C. polyphyllum acts by deceit involving optical signals and exploits other yellow-flowered species within its habitat by attracting their pollinators. The low capsule production under natural conditions was expected, but its reproductive success is assured through self-pollination by rain and high seed viability.
Resumo:
Habitat use, diet and body-size variation are examined in weevils from Heard Island. with specific attention being given to the Ectemnorhinus viridis species complex. E. viridis shows marked altitudinal variation in body size and vestiture, but there are no consistent associations between body size and diet. nor are there consistent among-individual differences in conventional taxonomic characters. Thus, the status of E. viridis as a single, variable species is maintained. This species occurs from sea level to 600 rn and it feeds on vascular plants and bryophytes. Canonopsis sericeus also feeds on bryophytes and vascular plants and occurs over a narrower altitudinal range. Palirhoeus eatoni is restricted to the surpralittoral zone where it feeds on marine algae and lichens. Bothrometopus brei,is and B. gracilipes both feed on cryptogams, with the former species occurring from sea level to 450 m. and the latter from 50 to 550 m above sea level. In all species, males are smaller than females and there is a size cline such that populations from higher elevations are smaller than those at lower altitudes. This cline is the reverse of that found on the Prince Edward Islands which, unlike Heard Island, lie to the north of the Antarctic Polar Frontal Zone. This difference in body-size clines between weevils on the two island groups is ascribed to the shorter growing season on the colder Heard Island. The information presented here supports previous ideas regarding the evolution of the Ectemnorhinus-group of weevils on the South Indian Ocean Province Islands, although it suggests that subsequent tests of these hypotheses would profit from the inclusion of molecular systematic work.
Resumo:
We examined the impact of single-tree selective logging and fuel reduction bums on the abundance of hollow-nesting bird species at a regional scale in southeastern Queensland, Australia. Data were collected on species abundance and habitat structure of dry sclerophyll production forest at 36 sites with known logging and fire histories. Sixteen bird species were recorded with most being resident, territorial, obligate hollow nesters that used hollows that were either small (18 cm diameter). Species densities were typically low, but combinations of two forest management and three habitat structural variables influenced the abundances of eight bird species in different and sometimes conflicting ways. The results suggest that habitat tree management for biodiversity in production forests cannot depend upon habitat structural characteristics alone. Management histories appear to have independent influence (on some bird species) that are distinguishable from their impacts on habitat structure per se. Rather than managing to maximize species abundances to maintain biodiversity, we may be better off managing to avoid extinctions of populations by identifying thresholds of acceptable fluctuations in populations of not only hollow-nesting birds but other forest dependent wildlife relative to scientifically valid forest management and habitat structural surrogates.