992 resultados para HYPERVALENT IODINE OXIDATION
Resumo:
tRNA isolated from Image Image , grown in the presence of radioactive sulfur was analyzed for the occurrence of thionucleotides. The analysis revealed the presence of at least five thionucleotides, of which three were identified as 4-thiouridylic acid, 5-methylaminomethyl-2-thiouridylic acid and 2-thiocytidylic acid. Iodine-oxidation affected the acceptor ability of several amino acid specific tRNAs, those for lysine and serine being affected most. The tRNA of Image Image differs from that of Image . Image both in the number and the relative proportion of thionucleotides.
Resumo:
The cis-amide bond isostere, 1,5-disubstituted tetrazole,has been introduced in the peptide backbone by a simple route starting from the thiopeptide. The desired 1,5-disubstituted tetrazole peptidomimetics were synthesized by the desulfurization of thiopeptides by using HgCl2 in the presence of NaN3/TEA in DMF in good yields. Various other thiophilic reagents including hypervalent iodine reagents failed to deliver the tetrazole product with the exception of CBr4/PPh3, which resulted in moderate yields. The advantage of the present protocol over previous methods has been demonstrated by the selective insertion of tetrazole into peptide-thiopeptide hybrids. Also, the protocol is compatible with commonly employed urethane protecting groups (Fmoc, Boc, and Cbz) in peptide chemistry. Thiopeptide Boc-Pro-CSNH]-Val-OMe (2i) and two tetrazole peptidomimetics Cbz-Ala-CN4]-Phe-OMe (3d) and Boc-Pro-CN4]-Val-OMe (3i) were obtained as single crystals and their molecular structures have been confirmed by X-ray crystallography.
Resumo:
We report here the first general method for the geminal diamination and an intermolecular metal-free, geminal aminooxygenation of vinylarenes using hypervalent iodine reagent. A new m-CPBA mediated geminal aminooxygenation is also reported. A novel reagent-switch for the control of migrating group by controlling the two independent geminal addition paths is developed. Deuterium labelling studies and the control studies have provided unambiguous evidences for the phenyl migration and hydride migration in the oxidative geminal difunctionalization process mediated by Phl(OCOCF3)(2) and m-CPBA, respectively through a semi-pinacol rearrangement. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
458 p.
Resumo:
A facile and efficient synthetic route towards; highly substituted isothiazol-3(2H)-ones 2 from readily available U.-carbamoyl ketene-S,S-acetals 1 is presented. The key step features the formation of an N-acylnitrenium ion, generated from the oxidization of substituted amides with the hypervalent iodine reagent phenyliodine(III) bis(trifluoroacetate) (PIFA), and its succeeding intramolecular amidation to form a new N-S bond affording the title compounds.
Resumo:
Solutions of [hydroxy(tosyloxy)iodo]benzene (HTIB or Koser's reagent) in acetonitrile were analyzed using high resolution electrospray ionization mass spectrometry (ESI-MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) under different conditions. Several species were characterized in these analyses. Based on these data, mechanisms were proposed for the disproportionation of the iodine(III) compounds in iodine(V) and iodine(I) species.
Resumo:
The use of fac-[Mo(CO)(3)(MeCN)(eta(2)-L(1))] (1a) {L(1) = Ph(2)PN(Pr-i)PPh(DMP)}(2) as a precursor to metalloligands and bimetallic, heterotrimetallic, and heptacoordinated complexes is reported. The reaction of 1a with diphosphazane, dppa, or a diphosphinoalkane such as dppm or dppe yields the fac-eta(1)-diphosphine substituted metalloligands, fac-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-PXP)] {PXP = dppa (2), dppm (3), and dppe (4)}. These undergo isomerization to yield the corresponding mer-diphosphine complexes (5-7). Oxidation of the uncoordinated phosphorus atom of the mer-eta(1)-dppm-substituted complex eventually provides mer-[Mo(CO)(3)-(eta(2)-L(1)){eta(1)-Ph(2)PCH(2)P(O)Ph(2)}](8). The structure of the latter complex has been confirmed by single crystal X-ray diffraction {triclinic system, P ($) over bar 1; a = 11.994(3), b = 14.807(2), c = 15.855(3) Angstrom; alpha = 114.24(1), beta = 91.35(2), and gamma = 98.95(1)degrees; Z = 2, 4014 data (F-0 > 5 sigma(F-0)), R = 0.066, R(W) = 0.069}. Treatment of the dppe metalloligand 7 with [PtCl2(COD)] yields the heterotrimetallic complex cis-[PtCl2{mer-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-dppe]}(2)] (9). Attempts to prepare a related trimetallic complex with the dppm-containing metalloligand were unsuccessful; only the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) and cis-[PtCl2(eta(2)-dppm)] were obtained. Reaction of la with dppe in the ratio 2:1 yields the mer-mer dinuclear complex [{mer-[Mo(CO)(3)(eta(2)-L(1))]}(2)(mu-dppe)] (10) bridged by dppe. Oxidation of 1a with iodine yields the Mo(II) heptacoordinated complex [MoI2(CO)(2)(eta(3)-L(1))] (11) with tridentate PPN coordination. The same Mo(II) complex 11 is also obtained by the direct oxidation of the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) with iodine. The structure of 11 has been confirmed by X-ray diffraction studies {monoclinic system, Cc; a = 10.471(2), b = 19.305(3), c = 17.325(3) Angstrom; beta = 95.47(2)degrees; Z = 4, 3153 data (F-0 > 5 sigma(F-0)), R = 0.049, R(W) = 0.051}. This complex exhibits an unusual capped-trigonal prismatic geometry around the metal. A similar heptacoordinated complex 12 with a chiral diphosphazane ligand {L(3) = (S,R)-P(h)2PN-(*CHMePh)*PPh(DMP)} has also been synthesized.
Resumo:
The reactions of polyaniline and poly-omicron-methylaniline of different oxidation degrees with I2 were followed by FTIR and electrical conductivity measurements. The results showed that the reaction of common polyanilines with I2 was oxidation in nature whereas that of the fully reduced ones was doping. The latter took place in two steps: oxidation of benzene-diamine units into quinone-diimine units (redox between I2 and the polymer chain) and formation of a conjugated system consisting of four aromatic rings (intramolecular chain redox).
Resumo:
The nature of the diperiodatocuprate(III) (DPC) species present in aqueous alkaline medium has been investigated by a kinetic and mechanistic study on the oxidation of iodide by DPC. The reaction kinetics were studied over the 1.0 ´ 10)3±0.1 mol dm)3 alkali range. The reaction order with respect to DPC, as well as iodide, was found to be unity when [DPC] [I)]. In the 1.0 ´ 10)3±1.0 ´ 10)2 mol dm)3 alkali region, the rate decreased with increase in the alkali concentration and a plot of the pseudo-®rst order rate constant, k versus 1/[OH)] was linear. Above 5.0 ´ 10)2 mol dm)3, a plot of k versus [OH)] was also linear with a non-zero intercept. An increase in ionic strength of the reaction mixtures showed no e ect on k at low alkali concentrations, whereas at high concentrations an increase in ionic strength leads to an increase in k. A plot of 1/k versus [periodate] was linear with an intercept in both alkali ranges. Iodine was found to accelerate the reaction at the three di erent alkali concentrations employed. The observed results indicated the following equilibria for DPC.
Resumo:
Iodine is an essential microelement for human health because it is a constituent of the thyroid hormones that regulate growth and development of the organism. Iodine Deficiency Disorders (IDDs) are believed to be one of the commonest preventable human health problems in the world today, according to the World Health Organization: that diseases include endemic goiter, cretinism and fetal abnormalities, among others, and they are caused by lack of iodine in the diet, that is the main source of iodine. Since iodine intake from food is not enough respect to human needs, this can be remedied through dietary diversification, mineral supplementation, food fortification, or increasing the concentration and/or bioavailability of mineral elements in the edible portions of crops through agricultural intervention or genetic selection (biofortification). The introduction of iodized salt is a strategy widely used and accepted to eradicate iodine deficiency, because it is an inexpensive source of stable iodine. Since the intake of salt, though iodized, must still be limited according to the risk of cardiovascular disease, so the increase of iodine content in plants for the production of functional foods is representing a field of study of particular interest and a potential market. In Italy potatoes enriched with iodine are produced by a patented procedure of agronomic biofortification for the fresh market since several years, furthermore they are recently accepted and recommended by Italian Thyroid Association, as an alternative source of iodine. Researches performed during the PhD course intended to characterize this innovative vegetables products, focusing the attention on different aspects, such as chemistry, agriculture, and quality of fresh and fried potatoes. For this purpose, lipid fraction of raw material was firstly investigated, in order to assess whether the presence of iodine in plant metabolism can affect fatty acid or sterol biosynthesis, according to the hypothesis that iodine can be bounded to polyunsaturated fatty acids of cell membranes, protecting them from peroxydation; phytosterols of plant sterol are also studied because their importance in reducing serum cholesterol, especially in potato plant sterols are also involved in synthesis of glycoalkaloid, a family of steroidal toxic secondary metabolites present in plants of the Solanaceae family. To achieve this goal chromatographic analytical techniques were employed to identify and quantify fatty acids and sterols profile of common and iodine enriched row potatoes. Another aim of the project was to evaluate the effects of frying on the quality of iodine-enriched and common potatoes. Since iodine-enriched potatoes are nowadays produced only for the fresh market, preliminary trials of cultivation under controlled environment were carried out to verify if potato varieties suitable for processing were able to absorb and accumulate iodine in the tuber. In a successive phase, these varieties were grown in the field, to evaluate their potential productivity and quality at harvest and after storage. The best potato variety to be destined for processing purposes, was finally subjected to repeated frying cycles; the effects of lipid oxidation on the composition and quality of both potatoes and frying oil bath were evaluated by chromatographic and spectrophotometric analytical techniques. Special attention were paid on volatile compounds of fried potatoes.
Resumo:
Iodine speciation analysis was carried out upon seawater samples collected in July 1993 at the DYFAMED station (43 °25?N, 7 °52?E) located in the northwestern Mediterranean Sea. Dissolved iodate and iodide were directly determined by differential pulse polarography and cathodic stripping square wave voltammetry, respectively, and organically bound iodine was estimated by wet-chemical oxidation with sodium hypochlorite. Iodate is the predominant species ranging from 416 nM in surface waters to 480 nM in bottom waters. Iodide is present in significant concentrations up to 60 nM in surface waters, undetectable between 500 and 1000 m depth and present in very low but measurable concentrations (about 6 nM) in deep waters. The vertical profile of total free iodine demonstrates observable removal from surface waters, slight enrichment at about 200 m depth and constant there below. Up to 40 nM of organically bound iodine has been estimated between 20 to 30 m. Factorial analysis of different iodine species with biologically relevant parameters provided strong evidence for iodine biophilic features.
Resumo:
We report a theoretical study of the multiple oxidation states (1+, 0, 1−, and 2−) of a meso,meso-linked diporphyrin, namely bis[10,15,20-triphenylporphyrinatozinc(II)-5-yl]butadiyne (4), using Time-Dependent Density Functional Theory (TDDFT). The origin of electronic transitions of singlet excited states is discussed in comparison to experimental spectra for the corresponding oxidation states of the close analogue bis{10,15,20-tris[3‘,5‘-di-tert-butylphenyl]porphyrinatozinc(II)-5-yl}butadiyne (3). The latter were measured in previous work under in situ spectroelectrochemical conditions. Excitation energies and orbital compositions of the excited states were obtained for these large delocalized aromatic radicals, which are unique examples of organic mixed-valence systems. The radical cations and anions of butadiyne-bridged diporphyrins such as 3 display characteristic electronic absorption bands in the near-IR region, which have been successfully predicted with use of these computational methods. The radicals are clearly of the “fully delocalized” or Class III type. The key spectral features of the neutral and dianionic states were also reproduced, although due to the large size of these molecules, quantitative agreement of energies with observations is not as good in the blue end of the visible region. The TDDFT calculations are largely in accord with a previous empirical model for the spectra, which was based simplistically on one-electron transitions among the eight key frontier orbitals of the C4 (1,4-butadiyne) linked diporphyrins.