712 resultados para HYPERBARIC OXYGENATION
Resumo:
Acute acoustic trauma (AAT) is a sudden sensorineural hearing loss caused by exposure of the hearing organ to acoustic overstimulation, typically an intense sound impulse, hyperbaric oxygen therapy (HOT), which favors repair of the microcirculation, can be potentially used to treat it. Hence, this study aimed to assess the effects of HOT on guinea pigs exposed to acoustic trauma. Fifteen guinea pigs were exposed to noise in the 4-kHz range with intensity of 110 dB sound level pressure for 72 h. They were assessed by brainstem auditory evoked potential (BAEP) and by distortion product otoacoustic emission (DPOAE) before and after exposure and after HOT at 2.0 absolute atmospheres for 1 h. The cochleae were then analyzed using scanning electron microscopy (SEM). There was a statistically significant difference in the signal-to-noise ratio of the DPOAE amplitudes for the 1- to 4-kHz frequencies and the SEM findings revealed damaged outer hair cells (OHC) after exposure to noise, with recovery after HOT (p = 0.0159), which did not occur on thresholds and amplitudes to BAEP (p = 0.1593). The electrophysiological BAEP data did not demonstrate effectiveness of HOT against AAT damage. However, there was improvement of the anatomical pattern of damage detected by SEM, with a significant reduction of the number of injured cochlear OHC and their functionality detected by DPOAE.
Resumo:
The aim of the present study was to evaluate the effect of hyperbaric oxygen therapy (HBO(2)) on the healing process of ischemic colonic anastomoses in rats Forty Wistar rats were divided into four groups control (Group I), control and HBO(2) (Group 11), ischemia (Group III), ischemia and HBO(2) (Group IV) Ischemia was achieved by clamping four centimeters of the colonic arcade On the eighth therapy day, the anastomotic region was removed for quantification of hydroxyproline and immunohistochemical determination of metalloproteinases 1 and 9 (MMP1,MMP9) The immunohistochemical studies showed significantly larger metalloproteinase-labeled areas in Group IV compared with Group III for both MMP1 and MMP9 (p<001) This finding points to a higher remodeling activity of the anastomoses in this experimental group Additionally, animals subjected to hyperbaric oxygen therapy showed both a reduction in interstitial edema and an increase in hydroxyproline concentrations [at the anastomotic site] Therefore, we conclude that HBO(2) is indeed beneficial in anastomotic ischemia
Resumo:
Background and Purpose-Functional MRI is a powerful tool to investigate recovery of brain function in patients with stroke. An inherent assumption in functional MRI data analysis is that the blood oxygenation level-dependent (BOLD) signal is stable over the course of the examination. In this study, we evaluated the validity of such assumption in patients with chronic stroke. Methods-Fifteen patients performed a simple motor task with repeated epochs using the paretic and the unaffected hand in separate runs. The corresponding BOLD signal time courses were extracted from the primary and supplementary motor areas of both hemispheres. Statistical maps were obtained by the conventional General Linear Model and by a parametric General Linear Model. Results-Stable BOLD amplitude was observed when the task was executed with the unaffected hand. Conversely, the BOLD signal amplitude in both primary and supplementary motor areas was progressively attenuated in every patient when the task was executed with the paretic hand. The conventional General Linear Model analysis failed to detect brain activation during movement of the paretic hand. However, the proposed parametric General Linear Model corrected the misdetection problem and showed robust activation in both primary and supplementary motor areas. Conclusions-The use of data analysis tools that are built on the premise of a stable BOLD signal may lead to misdetection of functional regions and underestimation of brain activity in patients with stroke. The present data urge the use of caution when relying on the BOLD response as a marker of brain reorganization in patients with stroke. (Stroke. 2010; 41:1921-1926.)
Resumo:
BACKGROUND: Because subcutaneous and splanchnic oxygenation indices are sensitive indicators of evolving hemorrhagic shock and adequacy of resuscitation, we postulated that these indices might have an equivalent role in the monitoring of severely burned patients. This observational study was undertaken to examine changes in tissue oxygenation indices during burn resuscitation. METHODS: Seven patients with major burns (54 +/- 21% total body surface area) were studied during the first 36 hours of fluid resuscitation. Silastic tubing was placed in the subcutaneous tissue just beneath both normal skin and deep partial thickness burn. Fiberoptic sensors inserted into the tubing measured subcutaneous oxygen and carbon dioxide tensions in the burnt skin (PO2scb and PCO2scb) and normal skin (PO2scn and PCO2scn) continuously. Gastric intramucosal pH (pHi) and the mucosal CO2 (PCO2m) gap were calculated using gastric tonometers. Mean arterial pressure, arterial pH, lactate, and pHi measurements were obtained for 36 hours. RESULTS: There were no significant differences in mean arterial pressure, arterial pH, or lactate concentrations throughout the study period, whereas indices of tissue oxygenation showed deterioration: pHi decreased from 7.2 +/- 0.1 to 6.7 +/- 0.3 (p = 0.06), the PCO2m gap increased from 12 +/- 17 to 108 +/- 123 mm Hg (p < 0.01), PO2scn decreased from 112 +/- 18 to 50 +/- 11 mm Hg (p < 0.01), PO2scb decreased from 62 +/- 23 to 29 +/- 16 mm Hg (p < 0.01), PCO2scn increased from 42 +/- 4 to 46 +/- 10 mm Hg (p = 0.2), and PCO2scb increased from 42 +/- 10 to 52 +/- 5 mm Hg (p = 0.05). CONCLUSION: Despite adequate global indices of tissue perfusion after 36 hours of resuscitation, tissue monitoring indicated significant deterioration in the splanchnic circulation and in the normal and burnt skin.
Resumo:
Pre-oxygenation for endotracheal suctioning for mechanically ventilated infants is routine practice in many neonatal intensive care units. In the present systematic review the evidence to support its use is discussed and the authors conclude that no confident recommendations can be made from the results of this review.
Resumo:
In this study we investigated the efficacy of hyperbaric oxygen (HBO) therapy, alone or combined with the pentavalent antimonial glucantime on Leishmania amazonensis infection. In parallel, the effect of Brazilian red propolis gel (propain) alone or combined with glucantime on L. amazonensis infection was evaluated. The inhibition of the infection in macrophages treated with glucantime in combination with HBO exposition was greater than that of macrophages treated with glucantime alone or HBO alone. The susceptible mouse strain BALB/c infected in the shaved rump with L. amazonensis treated with glucantime and exposed to HBO showed: time points in the course of the disease in which lesions were smaller than those of mice treated with glucantime alone and revascularization of the skin in the lesion site; interferon-gamma (IFN-g) levels were not elevated in lymph node cells from these animals. Propain alone was not efficient against lesions, although less exudative lesions were observed in animals treated with propain alone or combined with glucantime. These results reveal the potential value of HBO and red propolis in combination with glucantime for treating cutaneous leishmaniasis and encourage further studies on the effect of more aggressive HBO, propolis and glucantime therapies on different mouse models of leishmaniasis.
Resumo:
Hyperbaric oxygen has been successfully used on treatment of acute ischemic injuries involving soft tissues and chronic injuries. In nerve crush injuries, the mechanisms involved are very similar to those found in ischemic injuries. Consequently, it is logical to hypothesize that hyperbaric oxygen should improve nerve repair, which is a critical step on functional recovery. In the present study, we created standard nerve crush injuries on sciatic nerves of rats, which underwent treatment with hyperbaric oxygen. Results were assessed by functional evaluation using walking-track analysis. The functional recovery indexes observed did not differ from control group. We concluded that hyperbaric oxygen therapy, in the schedule used, had no influence on functional recovery after nerve crush injuries.
Resumo:
Purpose: In extreme situations, such as hyperacute rejection of heart transplant or major bleeding per-operating complications, an urgent heart explantation might be the only means of survival. The aim of this experimental study was to improve the surgical technique and the hemodynamics of an Extracorporeal Membrane Oxygenation (ECMO) support through a peripheral vascular access in an acardia model. Methods: An ECMO support was established in 7 bovine experiments (59±6.1 kg) by the transjugular insertion to the caval axis of a self-expanded cannula, with return through a carotid artery. After baseline measurements of pump flow and arterial and central venous pressure, ventricular fibrillation was induced (B), the great arteries were clamped, the heart was excised and right and left atria remnants, containing the pulmonary veins, were sutured together leaving an atrial septal defect (ASD) over the cannula in the caval axis. Measurements were taken with the pulmonary artery (PA) clamped (C) and anastomosed with the caval axis (D). Regular arterial and central venous blood gases tests were performed. The ANOVA test for repeated measures was used to test the null hypothesis and a Bonferroni t method for assessing the significance in the between groups pairwise comparison of mean pump flow. Results: Initial pump flow (A) was 4.3±0.6 L/min dropping to 2.8±0.7 L/min (P B-A= 0.003) 10 minutes after induction of ventricular fibrillation (B). After cardiectomy, with the pulmonary artery clamped (C) it augmented not significantly to 3.5±0.8 L/min (P C-B= 0.33, P C-A= 0.029). Finally, PA anastomosis to the caval axis was followed by an almost to baseline pump flow augmentation (4.1±0.7 L/min, P D-B= 0.009, P D-C= 0.006, P D-A= 0.597), permitting a full ECMO support in acardia by a peripheral vascular access. Conclusions: ECMO support in acardia is feasible, providing new opportunities in situations where heart must urgently be explanted, as in hyperacute rejection of heart transplant. Adequate drainage of pulmonary circulation is pivotal in order to avoid pulmonary congestion and loss of volume from the normal right to left shunt of bronchial vessels. Furthermore, the PA anastomosis to the caval axis not only improves pump flow but it also permits an ECMO support by a peripheral vascular access and the closure of the chest.
Resumo:
Experimentally renal tissue hypoxia appears to play an important role in the pathogenesis of chronic kidney disease (CKD) and arterial hypertension (AHT). In this study we measured renal tissue oxygenation and its determinants in humans using blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) under standardized hydration conditions. Four coronal slices were selected, and a multi gradient echo sequence was used to acquire T2* weighted images. The mean cortical and medullary R2* values ( = 1/T2*) were calculated before and after administration of IV furosemide, a low R2* indicating a high tissue oxygenation. We studied 195 subjects (95 CKD, 58 treated AHT, and 42 healthy controls). Mean cortical R2 and medullary R2* were not significantly different between the groups at baseline. In stimulated conditions (furosemide injection), the decrease in R2* was significantly blunted in patients with CKD and AHT. In multivariate linear regression analyses, neither cortical nor medullary R2* were associated with eGFR or blood pressure, but cortical R2* correlated positively with male gender, blood glucose and uric acid levels. In conclusion, our data show that kidney oxygenation is tightly regulated in CKD and hypertensive patients at rest. However, the metabolic response to acute changes in sodium transport is altered in CKD and in AHT, despite preserved renal function in the latter group. This suggests the presence of early renal metabolic alterations in hypertension. The correlations between cortical R2* values, male gender, glycemia and uric acid levels suggest that these factors interfere with the regulation of renal tissue oxygenation.
Resumo:
Measuring tissue oxygenation in vivo is of interest in fundamental biological as well as medical applications. One minimally invasive approach to assess the oxygen partial pressure in tissue (pO2) is to measure the oxygen-dependent luminescence lifetime of molecular probes. The relation between tissue pO2 and the probes' luminescence lifetime is governed by the Stern-Volmer equation. Unfortunately, virtually all oxygen-sensitive probes based on this principle induce some degree of phototoxicity. For that reason, we studied the oxygen sensitivity and phototoxicity of dichlorotris(1, 10-phenanthroline)-ruthenium(II) hydrate [Ru(Phen)] using a dedicated optical fiber-based, time-resolved spectrometer in the chicken embryo chorioallantoic membrane. We demonstrated that, after intravenous injection, Ru(Phen)'s luminescence lifetime presents an easily detectable pO2 dependence at a low drug dose (1 mg∕kg) and low fluence (120 mJ∕cm2 at 470 nm). The phototoxic threshold was found to be at 10 J∕cm2 with the same wavelength and drug dose, i.e., about two orders of magnitude larger than the fluence necessary to perform a pO2 measurement. Finally, an illustrative application of this pO2 measurement approach in a hypoxic tumor environment is presented.
Resumo:
Objective: To measure renal tissue oxygenation in young normo-and hypertensive volunteers under conditions of salt loading and depletion using blood oxygen level dependent magnetic resonance imaging (BOLD-MRI). Design and Methods: Ten normotensive (NT) male volunteers (age 26.5_7.4 y) and eight non-treated, hypertensive (HT) male volunteers (age 28.8_5.7 y) were studied after one week on a high salt (HS) regimen (6g of salt/day added to their normal regimen) and again after one week of a low sodium diet (LS). On the 8th day, BOLD-MRI was performed under standard hydration conditions. Four coronal slices were selected in each kidney, and combination sequence was used to acquire T2* weighted images. The mean R2* (1/T2*) was measured to determine cortical and medullar oxygenation. Results: Baseline characteristics and their changes are shown in the table. The mean cortical R2* was not different under conditions of HS or LS (17.8_1.3 vs. 18.2_0.6 respectively in NT group, p_0.27; 17.4_0.6 vs 17.8_0.9 in HT group, p_0.16). However, the mean medullary R2* was significantly lower under LS conditions in both groups (31.3_0.6 vs 28.1_0.8 in NT group, p_0.05; 30.3_0.8 vs 27.9_1.5 in HT group, p_0.05), corresponding to higher medullary oxygenation as compared to HS conditions, without significant changes in hemoglobin or hematocrit values. The salt induced changes in medullary oxygenation were comparable in the two groups (ANOVA, p_0.1). Conclusion: Dietary sodium restriction leads to increased renal medullary oxygenation compared to high sodium intake in normo-and hypertensive subjects. This observation may in part explain the potential renal benefits of a low sodium intake.
Resumo:
AIM: Improving cerebral perfusion is an essential component of post-resuscitation care after cardiac arrest (CA), however precise recommendations in this setting are limited. We aimed to examine the effect of moderate hyperventilation (HV) and induced hypertension (IH) on non-invasive cerebral tissue oxygenation (SctO2) in patients with coma after CA monitored with near-infrared spectroscopy (NIRS) during therapeutic hypothermia (TH). METHODS: Prospective pilot study including comatose patients successfully resuscitated from out-of-hospital CA treated with TH, monitored with NIRS. Dynamic changes of SctO2 upon HV and IH were analyzed during the stable TH maintenance phase. HV was induced by decreasing PaCO2 from ∼40 to ∼30 mmHg, at stable mean arterial blood pressure (MAP∼70 mmHg). IH was obtained by increasing MAP from ∼70 to ∼90 mmHg with noradrenaline. RESULTS: Ten patients (mean age 69 years; mean time to ROSC 19 min) were studied. Following HV, a significant reduction of SctO2 was observed (baseline 74.7±4.3% vs. 69.0±4.2% at the end of HV test, p<0.001, paired t-test). In contrast, IH was not associated with changes in SctO2 (baseline 73.6±3.5% vs. 74.1±3.8% at the end of IH test, p=0.24). CONCLUSIONS: Moderate hyperventilation was associated with a significant reduction in SctO2, while increasing MAP to supra-normal levels with vasopressors had no effect on cerebral tissue oxygenation. Our study suggests that maintenance of strictly normal PaCO2 levels and MAP targets of 70mmHg may provide optimal cerebral perfusion during TH in comatose CA patients.
Resumo:
Near infrared spectroscopy (NIRS) is a non-invasive method of estimating the haemoglobin concentration changes in certain tissues. It is frequently used to monitor oxygenation of the brain in neonates. At present it is not clear whether near infrared spectroscopy of other organs (e.g. the liver as a corresponding site in the splanchnic region, which reacts very sensitively to haemodynamic instability) provides reliable values on their tissue oxygenation. The aim of the study was to test near infrared spectroscopy by measuring known physiologic changes in tissue oxygenation of the liver in newborn infants during and after feeding via a naso-gastric tube. The test-retest variability of such measurements was also determined. On 28 occasions in 25 infants we measured the tissue oxygenation index (TOI) of the liver and the brain continuously before, during and 30 minutes after feeding via a gastric tube. Simultaneously we measured arterial oxygen saturation (SaO2), heart rate (HR) and mean arterial blood pressure (MAP). In 10 other newborn infants we performed a test-retest analysis of the liver tissue oxygenation index to estimate the variability in repeated intra-individual measurements. The tissue oxygenation index of the liver increased significantly from 56.7 +/- 7.5% before to 60.3 +/- 5.6% after feeding (p < 0.005), and remained unchanged for the next 30 minutes. The tissue oxygenation index of the brain (62.1 +/- 9.7%), SaO2 (94.4 +/- 7.1%), heart rate (145 +/- 17.3 min-1) and mean arterial blood pressure (52.8 +/- 10.2 mm Hg) did not change significantly. The test-retest variability for intra-individual measurements was 2.7 +/- 2.1%. After bolus feeding the tissue oxygenation index of the liver increased as expected. This indicates that near infrared spectroscopy is suitable for monitoring changes in tissue oxygenation of the liver in newborn infants.
Resumo:
In extreme situations, such as hyperacute rejection of heart transplant or major heart trauma, heart preservation may not be possible. Our experimental team works on a project of peripheral extracorporeal membrane oxygenation (ECMO) support in acardia as a bridge to heart transplantation or artificial heart implantation. An ECMO support was established in five calves (58.6 ± 6.9 kg) by the transjugular insertion to the caval axis of a self-expanded cannula, with carotid artery return. After baseline measurements, ventricular fibrillation was induced, great arteries were clamped, heart was excised, and right and left atria remnants, containing pulmonary veins, were sutured together leaving an atrial septal defect over the caval axis cannula. Measurements of pump flow and arterial pressure were taken with the pulmonary artery clamped and anastomosed with the caval axis for a total of 6 hours. Pulmonary artery anastomosis to the caval axis provided an acceptable 6 hour hemodynamic stability, permitting a peripheral access ECMO support in extreme scenarios indicating a heart explantation.
Resumo:
BACKGROUND: The impact of osmotic therapies on brain oxygen has not been extensively studied in humans. We examined the effects on brain tissue oxygen tension (PbtO(2)) of mannitol and hypertonic saline (HTS) in patients with severe traumatic brain injury (TBI) and refractory intracranial hypertension. METHODS: 12 consecutive patients with severe TBI who underwent intracranial pressure (ICP) and PbtO(2) monitoring were studied. Patients were treated with mannitol (25%, 0.75 g/kg) for episodes of elevated ICP (>20 mm Hg) or HTS (7.5%, 250 ml) if ICP was not controlled with mannitol. PbtO(2), ICP, mean arterial pressure, cerebral perfusion pressure (CPP), central venous pressure and cardiac output were monitored continuously. RESULTS: 42 episodes of intracranial hypertension, treated with mannitol (n = 28 boluses) or HTS (n = 14 boluses), were analysed. HTS treatment was associated with an increase in PbtO(2) (from baseline 28.3 (13.8) mm Hg to 34.9 (18.2) mm Hg at 30 min, 37.0 (17.6) mm Hg at 60 min and 41.4 (17.7) mm Hg at 120 min; all p<0.01) while mannitol did not affect PbtO(2) (baseline 30.4 (11.4) vs 28.7 (13.5) vs 28.4 (10.6) vs 27.5 (9.9) mm Hg; all p>0.1). Compared with mannitol, HTS was associated with lower ICP and higher CPP and cardiac output. CONCLUSIONS: In patients with severe TBI and elevated ICP refractory to previous mannitol treatment, 7.5% hypertonic saline administered as second tier therapy is associated with a significant increase in brain oxygenation, and improved cerebral and systemic haemodynamics.