978 resultados para HYDROELECTRIC POWER


Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is acknowledged that wind power is a stochastic energy source compared to hydroelectric generation which is easily scheduled. In this paper a scheme for coordinating wind power plant and hydroelectric power plant is presented by using PMUs to measure and control the state of wind and hydro power plants. Hydroelectric generation is proposed as a method of energy reserve and compensation in the context of wind power fluctuation in order to avoid full or partial curtailment of wind generation to benefit wind providers. The feasibility of this proposed scheme is investigated by power flow calculation and stability analysis using the IEEE 30-bus power system model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Operators of hydroelectric power stations sometimes call upon engineers to modify existing hydroelectric turbines, usually several decades old, for improved maintainability and reliability. One common modification is the hybridisation of plain thrust pads to allow hydrostatic operation to reduce the risk of bearing wipe at low speed (virtually all new installations benefit from this feature). A modification such as this is not a difficult undertaking; however, there are numerous factors that need to be considered in order to maximize bearing performance. One factor that stands out above the others is whether the thrust bearing should be designed to lift the turbine immediately from the standing condition, which presents an interesting challenge: the recess has to have a sufficiently large area in order for the supply pressure to be able to overcome the dead weight of the turbine. If the combination of groove area and pressure is insufficient, then lifting is neither immediate nor guaranteed. This need not be a significant problem, as the bearings have exhibited adequate performance even in the absence of a hydrostatic lubricant supply. A case study is presented whereby relatively large hydrostatic recesses are added to the pads of thrust bearing. It is demonstrated with the aid of simple numerical modelling that the impact of the recess relative to the original pad is small under normal operating conditions. Most surprising, however, is that significant reductions in average oil film temperature and power dissipation are predicted.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper evaluates the operational activities of Chinese hydroelectric power companies over the period 2000-2010 using a finite mixture model that controls for unobserved heterogeneity. In so doing, a stochastic frontier latent class model, which allows for the existence of different technologies, is adopted to estimate cost frontiers. This procedure not only enables us to identify different groups among the hydro-power companies analysed, but also permits the analysis of their cost efficiency. The main result is that three groups are identified in the sample, each equipped with different technologies, suggesting that distinct business strategies need to be adapted to the characteristics of China's hydro-power companies. Some managerial implications are developed. © 2012 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Power at the Falls: The first recorded harnessing of Niagara Falls power was in 1759 by Daniel Joncairs. On the American side of the Falls he dug a small ditch and drew water to turn a wheel which powered a sawmill. In 1805 brothers Augustus and Peter Porter expanded on Joncairs idea. They bought the American Falls from New York State at public auction. Using Joncairs old site they built a gristmill and tannery which stayed in business for twenty years. The next attempt at using the Falls came in 1860 when construction of the hydraulic canal began by the Niagara Falls Hydraulic Power and Manufacturing Co. The canal was complete in 1861 and brought water from the Niagara river, above the falls, to the mills below. By 1881 the Niagara Falls Hydraulic Power and Manufacturing Co. had a small generating station which provided some electricity to the village of Niagara Falls and the Mills. This lasted only four years and then the company sold its assets at public auction due to bankruptcy. Jacob Schoellkopf arrived at the Falls in 1877 with the purchase of the hydraulic canal land and water and power rights. In 1879 Schoellkopf teamed up with Charles Brush (of Euclid Ohio) and powered Brush’s generator and carbon arc lights with the power from his water turbines, to illuminate the Falls electrically for the first time. The year 1895 marked the opening of the Adam No. 1 generating station on the American side. The station was the beginnings of modern electrical utility operations. The design and operations of the generating station came from worldwide competitions held by panels of experts. Some who were involved in the project include; George Westinghouse, J. Pierpont Morgan, Lord Kelvin and Nikoli Tesla. The plants were operated by the Niagara Falls Power Company until 1961, when the Robert Moses Plant began operation in Lewiston, NY. The Adams plants were demolished that same year and the site used as a sewage treatment plant. The Canadian side of the Falls began generating their own power on January 1, 1905. This power came from the William Birch Rankine Power Station located 500 yards above the Horseshoe Falls. This power station provided the village of Fort Erie with its first electricity in 1907, using its two 10,000 electrical horsepower generators. Today 11 generators produce 100,000 horsepower (75 megawatts) and operate as part of the Niagara Mohawk and Fortis Incorporated Power Group.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Welland Power and Supply Canal Company Limited, established in 1893 and incorporated in 1894 with a capital stock of $500,000. The aim of the company was to harness the natural water supply of the Niagara and Welland Rivers. In 1898 the Canadian Electrical News published a report by Henry Symons, QC outlining the main project of the company. This project involves the construction of a canal from the Welland River to the brow of the mountain at Thorold, a distance of 8 miles; the construction at Thorold of a power house, and from Thorold to Lake Ontario, a raceway by which to carry water into the lake. The estimate for the machinery to generate 100,000 horse power is £125,000; for transmission line to Toronto at a voltage of 10,000….The total estimate therefore amounts to £2,452,162, or roughly speaking, $12,000,000. Source: Canadian Electrical News, August 1898, p. 172. In 1899 the company officers petitioned the federal government desiring a name change to the Niagara-Welland Power Company Limited. Officers of the company were Harry Symons, President; Charles A. Hesson, Vice-President; and M.R. O’Loughlin, James B. Sheehan, James S. Haydon, Frederick K. Foster, directors; John S. Campbell, secretary-treasurer. The company’s head offices were located in St. Catharines, with a New York (City) office on Broad Street. In 1905 and 1909 the company petitioned the federal government for additional time to construct its works, which was granted. The company had until May 16, 1915 to complete construction. John S. Campbell (1860-1950) was a graduate of the University of Toronto and Osgoode Hall. During his university years John began his military career first in "K" Company, Queens Own rifles and then later as Commanding Officer of the 19th Lincoln Regiment, from 1906 to 1910. Upon his return to St. Catharines John Campbell served as secretary in the St. Catharines Garrison Club, a social club for military men begun in 1899. After being called to the Bar, he became a partner in the firm of Campbell and McCarron and was appointed to the bench in 1916, serving until retirement in 1934. Judge Campbell served as an alderman for several terms and was the mayor of St. Catharines in 1908 and 1909. He also served as the first chairman of the St. Catharines Public Utilities in 1914. John S. Campbell was married to Elizabeth Oille, daughter of Jerome B. and Charlotte (St. John) Oille. The family home "Cruachan" was located at 32 Church St.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Public Ownership League of America Conference, September 10th to 13th, 1923, at Toronto, Ontario.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Starting from the deregulated process of the Electric Sector, there was the need to attribute responsibilities to several agents and to elaborate appropriate forms of remuneration of the services rendered by the same. One of the services of great importance within this new electric sector is the Ancillary Services. Among the various types of Ancillary Services, Spinning Reserve is a service necessary for maintaining the integrity of the transmission system from either generation interruptions or load variations. This paper uses the application of the Economic Dispatch theory with the objective of quantifies the availability of Spinning Reserve supply in hydroelectric plants. The proposed methodology utilizes the generating units as well as their efficiencies so as to attend the total demand with the minimum water discharge. The proposed methodology was tested through the data provided by the Água Vermelha Hydroelectric Power Plant. These tests permitted the opportunity cost valuation to the Spinning Reserve supply in hydroelectric plants. © 2005 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To address daily fluctuations in electricity demands, the quantities of water passing through the turbines of hydropower plants can vary significantly (up to fourfold) during a 24-h cycle. This study evaluates the effects of hourly variations in water discharges on the limnological conditions observed in two below-dam river stretches. The study reservoirs, Capivara and Taquaruçu, are the 9th and 10th reservoirs in a cascade of dams in the Paranapanema River in south-east Brazil. The reservoirs exhibit different trophic conditions, water retention times, thermal regimes and spillway positions. Capivara Reservoir is deeper, meso-eutrophic, with a high water retention time and hypolimnetic discharges (32 m) varying between 500 and 1400 m3 s-1. In contrast, Taquaruçu Reservoir is relatively shallow, oligo-mesotrophic, and has a low retention time, with water discharges varying between 500 and 2000 m3 s-1. Its turbine water intake zone also is more superficial (7 m). For two periods of the year, winter and summer, profiles of limnological measurements were developed in the lacustrine (above-dam site) zones of the reservoirs, as well as in the downstream river stretches (below-dam site). In both cases, the sampling was carried out at 4-h intervals over a complete nictemeral cycle. The results demonstrated that the reservoir operating regime (water discharge variations) promoted significant differences in the conditions of the river below the dams, especially for water velocity, turbidity, and nutrient and suspended solids concentrations. The reservoir physical characteristics, including depth, thermal stratification and outlet structure, are also key factors influencing the limnology and water quality at the below-dam sampling sites. In the case of Capivara Reservoir, for example, the low dissolved oxygen concentration (<5.0 mg L-1) in its bottom water layer was transferred to the downstream river stretches during the summer. These study results demonstrated that it is important to continue such investigations as a means of verifying whether or not these high-amplitude/low-frequency variations could negatively affect the downstream river biota. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Asia Pty Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The documentary is available in Portuguese at the following link: http://hdl.handle.net/10045/17580