978 resultados para HUMAN COLONIC MICROBIOTA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study probed the possible effects of type III resistant starch (RS) crystalline polymorphism on RS fermentability by human gut microbiota and the short chain fatty acids production in vitro. Human fecal pH-controlled batch cultures showed RS induces an ecological shift in the colonic microbiota with polymorph B inducing Bifidobacterium spp. and polymorph A inducing Atopobium spp. Interestingly, polymorph B also induced higher butyrate production to levels of 0.79 mM. In addition, human gut simulation demonstrated that polymorph B promotes the growth of bifidobacteria in the proximal part of the colon and double their relative proportion in the microbiota in the distal colon. These findings suggest that RS polymorph B may promote large bowel health. While the findings are limited by study constraints, they do raise the possibility of using different thermal processing to delineate differences in the prebiotic capabilities of RS, especially its butryrogenicity in the human colon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The colonic microbiota undergoes certain age related changes that may affect health. For example, above the age of 55–65 y, populations of bifidobacteria are known to decrease markedly. Bifidobacteria are known inhibitors of pathogenic microbes and a decrease in their activities may increase susceptibility to infections. There is therefore interest in trying to reverse their decline in aged persons. As the gut microbiota responds to dietary intervention, both probiotics and prebiotics have been tested in this regard. Probiotics are live microbes in the diet, whereas prebiotics are fermentable ingredients that specifically target components of the indigenous microbiota seen to be beneficial. We have published a recent paper demonstrating that prebiotic galactooligosaccharides can exert power effects upon bifidobacteria in the gut flora of elderly persons (both in vivo and in vitro). This addendum summarizes research that led up to this study and discusses the possible impact of prebiotics in impacting upon the gut health of aged persons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wheat dextrin soluble fibre may have metabolic and health benefits, potentially acting via mechanisms governed by the selective modulation of the human gut microbiota. Our aim was to examine the impact of wheat dextrin on the composition and metabolic activity of the gut microbiota. We used a validated in vitro three-stage continuous culture human colonic model (gut model) system comprised of vessels simulating anatomical regions of the human colon. To mimic human ingestion, 7 g of wheat dextrin (NUTRIOSE® FB06) was administered to three gut models, twice daily at 10.00 and 15.00, for a total of 18 days. Samples were collected and analysed for microbial composition and organic acid concentrations by 16S rRNA-based fluorescence in situ hybridisation and gas chromatography approaches, respectively. Wheat dextrin mediated a significant increase in total bacteria in vessels simulating the transverse and distal colon, and a significant increase in key butyrate-producing bacteria Clostridium cluster XIVa and Roseburia genus in all vessels of the gut model. The production of principal short-chain fatty acids, acetate, propionate and butyrate, which have been purported to have protective, trophic and metabolic host benefits, were increased. Specifically, wheat dextrin fermentation had a significant butyrogenic effect in all vessels of the gut model and significantly increased production of acetate (vessels 2 and 3) and propionate (vessel 3), simulating the transverse and distal regions of the human colon, respectively. In conclusion, wheat dextrin NUTRIOSE® FB06 is selectively fermented in vitro by Clostridium cluster XIVa and Roseburia genus and beneficially alters the metabolic profile of the human gut microbiota.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological aspects and the antimicrobial susceptibility profile of the Bacteroides fragilis group isolated from clinical and human intestinal specimens were examined in this study. B. fragilis group strains were isolated from 46 (37%) of 124 clinical specimens and the source of the samples was: Blood culture (3), intraabdominal infection (27), brain abscess (2), soft tissue infection (17), respiratory sinus (3), pleural aspirate (9), breast abscess (3), surgical infected wound (22), pelvic inflammatory disease (22), chronic otitis media (9) and miscellaneous (7). Intraabdominal and soft tissue infections were responsible for more than half of the clinical isolates. Susceptibility to penicillin, cefoxitin, tetracycline, metronidazole, chloramphenicol and clindamycin was examined. All isolates were susceptible to metronidazole and chloramphenicol. For clindamycin and cefoxitin the resistance rates observed were 21.7% and 10.9% respectively. Susceptibility profiles varied among the different species tested. A total of 37 species of B. fragilis group isolated from intestinal microbiota of individuals who had no antimicrobial therapy for at least 1 month before the sampling was also examined. All strains were also susceptible to chloramphenicol and motronidazole and the resistance rates to clindamycin and cefoxitin were 19.4% and 5.4% respectively. A few institutions, in Brazil, have monitored the antimicrobial susceptibility of B. fragilis group strains isolated from anaerobic infections. The resistance rates to cefoxitin and clindamycin and the variation in susceptibility patterns among the species isolated in this study emphasize the need for monitoring of susceptibility patterns of B. fragilis group organisms isolated, especially at our University Hospitals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human gut microbiota comprises a diverse microbial consortium closely co-evolved with the human genome and diet. The importance of the gut microbiota in regulating human health and disease has however been largely overlooked due to the inaccessibility of the intestinal habitat, the complexity of the gut microbiota itself and the fact that many of its members resist cultivation and are in fact new to science. However, with the emergence of 16S rRNA molecular tools and "post-genomics" high resolution technologies for examining microorganisms as they occur in nature without the need for prior laboratory culture, this limited view of the gut microbiota is rapidly changing. This review will discuss the application of molecular microbiological tools to study the human gut microbiota in a culture independent manner. Genomics or metagenomics approaches have a tremendous capability to generate compositional data and to measure the metabolic potential encoded by the combined genomes of the gut microbiota. Another post-genomics approach, metabonomics, has the capacity to measure the metabolic kinetic or flux of metabolites through an ecosystem at a particular point in time or over a time course. Metabonomics thus derives data on the function of the gut microbiota in situ and how it responds to different environmental stimuli e. g. substrates like prebiotics, antibiotics and other drugs and in response to disease. Recently these two culture independent, high resolution approaches have been combined into a single "transgenomic" approach which allows correlation of changes in metabolite profiles within human biofluids with microbiota compositional metagenomic data. Such approaches are providing novel insight into the composition, function and evolution of our gut microbiota.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gluco-oligosaccharides produced by Gluconobacter oxydans NCIMB 4943 from maltodextrin as the source, were evaluated for their fermentability by the human colonic microflora. The selectivity of growth of desirable bacteria in the human colon was studied in a three-stage continuous model of the human large intestine. Populations of bacteria, and their fluctuations as a response to the fermentation, were enumerated using fluorescent in situ hybridization (FISH). The gluco-oligosaccharides resulted in increases in numbers of bifidobacteria and the Lactobacillus/Enterococcus group in all 3 vessels of the system, representing the proximal, transverse and distal colonic areas. The prebiotic indices of the glucooligosaccharides were 2.29, 4.23 and 2.74 in V1, V2 and V3 respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to develop selectively fermented (prebiotic) carbohydrate molecules which would also result in the generation of butyric acid. Glucooligosaccharides produced by Gluconobacter oxydans NCIMB 4943 from various types of maltodextrins were evaluated for their fermentation by mixed cultures of human colonic microflora. The selectivity of growth of desirable bacteria (bifidobacteria, lactobacilli) was studied in stirred pH-controlled (6.8) batch cultures. Bacterial populations were enumerated using fluorescent in situ hybridization (FISH). Gluco-oligosaccharides resulted in significantly (P<0.05) increased numbers of bifidobacteria and lactobacilli within 24 hours. Bacteroides, clostridial and eubacterial populations were slightly decreased at 48 h. There was very little difference in selectivity between the maltodextrin substrates and the products, although maltodextrin displayed a slightly less selective fermentation than the gluco-oligosaccharide products, also stimulating the growth of bacteroides, clostridia and eubacteria. Gluco-oligosaccharides, produced from G19 maltodextrin, resulted in the best prebiotic effect with the highest prebiotic index (PI) of 5.90 at 48 hours. Acetate, propionate and butyrate were all produced from glucooligosaccharides, derived from G19 maltodextrin, at 48 hours but no lactate or formate were detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human gut microbiota comprises a diverse microbial consortium closely co-evolved with the human genome and diet. The importance of the gut microbiota in regulating human health and disease has however been largely overlooked due to the inaccessibility of the intestinal habitat, the complexity of the gut microbiota itself and the fact that many of its members resist cultivation and are in fact new to science. However, with the emergence of 16S rRNA molecular tools and "post-genomics" high resolution technologies for examining microorganisms as they occur in nature without the need for prior laboratory culture, this limited view of the gut microbiota is rapidly changing. This review will discuss the application of molecular microbiological tools to study the human gut microbiota in a culture independent manner. Genomics or metagenomics approaches have a tremendous capability to generate compositional data and to measure the metabolic potential encoded by the combined genomes of the gut microbiota. Another post-genomics approach, metabonomics, has the capacity to measure the metabolic kinetic or flux of metabolites through an ecosystem at a particular point in time or over a time course. Metabonomics thus derives data on the function of the gut microbiota in situ and how it responds to different environmental stimuli e.g. substrates like prebiotics, antibiotics and other drugs and in response to disease. Recently these two culture independent, high resolution approaches have been combined into a single "transgenomic" approach which allows correlation of changes in metabolite profiles within human biofluids with microbiota compositional metagenomic data. Such approaches are providing novel insight into the composition, function and evolution of our gut microbiota.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synbiotics are recognized means of modulating gut microbiota composition and activities. However, whether synbiotics are superior to prebiotics and probiotics alone in moderating the gut microbiota towards a purportedly healthy composition has not been determined. Eight selected synbiotics (short-chain fructooligosaccharides or fructooligosaccharides, each combined with one of four probiotics, Lactobacillus fermentum ME-3, Lactobacillus plantarum WCFS1, Lactobacillus paracasei 8700:2 or Bifidobacterium longum 46) were added to 24-h pH-controlled anaerobic faecal batch cultures. The prebiotic and probiotic components were also tested alone to determine their respective role within the synbiotic for modulation of the faecal microbiota. Effects upon major groups of the microbiota were evaluated using FISH. Rifampicin variant probiotic strains were used to assess probiotic levels. Synbiotic and prebiotics increased bifidobacteria and the Eubacterium rectale-Clostridium coccoides group. Lower levels of Escherichia coli were retrieved with these combinations after 5 and 10 h of fermentation. Probiotics alone had little effect upon the groups, however. Multivariate analysis revealed that the effect of synbiotics differed from the prebiotics as higher levels of Lactobacillus-Enterococcus were observed when the probiotic was stimulated by the prebiotic component. Here, the synbiotic approach was more effective than prebiotic or probiotic alone to modulate the gut microbiota.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exopolysaccharides (EPS) isolated from two Bifidobacterium strains, one of human intestinal origin (Bifidobacterium longum subsp. longum IPLA E44) and the other from dairy origin (Bifidobacterium animalis subsp. lactis IPLA R1), were subjected to in vitro chemically simulated gastrointestinal digestion. which showed the absence of degradation of both polymers in these conditions. Polymers were then used as carbon sources in pH-controlled faecal batch cultures and compared with the non-prebiotic carbohydrate glucose and the prebiotic inulin to determine changes in the composition of faecal bacteria. A set of eight fluorescent in situ hybridisation oligonucleotide probes targeting 16S rRNA sequences was used to quantify specific groups of microorganisms. Growth of the opportunistic pathogen Clostridium histolyticum occurred with all carbohydrates tested similarly to that found in negative control cultures without added carbohydrate and was mainly attributed to the culture conditions used rather than enhancement of growth by these substrates. Polymers E44 and RI stimulated growth of Lactobacillus/Enterococcus, Bifidobacterium, and Bacteroides/Prevotella in a similar way to that seen with inulin. The EPS RI also promoted growth of the Atopobium cluster during the first 24 h of fermentation. An increase in acetic and lactic acids was found during early stages of fermentation (first 10-24 h) correlating with increases of Lactobacillus, Bifidobacterium, and Atopobium. Propionic acid concentrations increased in old cultures, which was coincident with the enrichment of Clostridium cluster IX in cultures with EPS RI and with the increases in Bacteroides in cultures with both microbial EPS (RI and E44) and inulin. The lowest acetic to propionic acid ratio was obtained for EPS E44. None of the carbohydrates tested supported the growth of microorganisms from Clostridium clusters XIVa+b and IV, results that correlate with the poor butyrate production in the presence of EPS. Thus, EPS synthesized by bifidobacteria from dairy and intestinal origins can modulate the intestinal microbiota in vitro, promoting changes in some numerically and metabolically relevant microbial populations and shifts in the production of short chain fatty acids. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An anaerobic three-vessel continuous-flow culture system, which models the three major anatomical regions of the human colon, was used to study the persistence of Candida albicans in the presence of a faecal microbiota. During steady state conditions, overgrowth of C. albicans was prevented by commensal bacteria indigenous to the system. However antibiotics, such as tetracycline have the ability to disrupt the bacterial populations within the gut. Thus, colonization resistance can be compromised and overgrowth of undesirable microorganisms like C. albicans can then occur. In this study, growth of C. albicans was not observed in the presence of an established faecal microbiota. However, following the addition of tetracycline to the growth medium, significant growth of C. albicans occurred. A probiotic Lactobacillus plantarum LPK culture was added to the system to investigate whether this organism had any effects upon the Candida populations. Although C. albicans was not completely eradicated in the presence of this bacterium, cell counts were markedly reduced, indicating a compromised physiological function. This study shows that the normal gut flora can exert 'natural' resistance to C. albicans, however this may be diminished during antibiotic intake. The use of probiotics can help fortify natural resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pectins and pectic-oligosaccharides, as derived by controlled enzymatic hydrolysis, were evaluated for their ability to interfere with the toxicity of Shiga-like toxins from Escherichia coli O157:H7. Both types of material resulted in some degree of protection but this was significantly higher (P > 0.01) with the oligosaccharide fractions (giving 90-100% cell survival, compared to 70-80% with the polymer). An effect of methylation on the protective effect was detected with lower degrees being more active. The pectic-oligosaccharides and galabiose, the minimum toxin receptor analogue, were shown to inhibit toxicity and were both protective at 10 mg ml(-1), but not at lower concentrations. (C) 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Dietary fibres have been associated with decreased risk of various cancers, although the mechanisms are unclear. Induction of apoptosis in tumour cells is thought to be an important protective mechanism against colorectal cancer. This work investigates the effects of pectins and pecticoligosaccharides (POS) on the human colonic adenocarcinoma cell line HT29. Materials and Methods: The anti-proliferative effects of pectin and POS were studied by testing the HT29 cells for cytotoxicity, differentiation and/or apoptosis by lactate dehydrogenase, alkaline phosphatase and caspase-3 activity assays. DNA agarose gel electrophoresis was also carried out. Results: A significant reduction in attached cell numbers was observed after three days incubation. This decrease was neither due to cells undergoing necrosis nor differentiation. Increased apoptosis frequency, after incubation with 1% (w/v) pectin andlor POS, was demonstrated by caspase-3 activity and DNA laddering on agarose gel electrophoresis. Conclusion: Dietary pectins and their degradation products may contribute to the reported protective effects of fruits against colon cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The composition of the colonic microbiota of 91 northern Europeans was characterized by fluorescent in situ hybridization using 18 phylogenetic probes. On average 75% of the bacteria were identified, and large interindividual variations were observed. Clostridium coccoides and Clostridium leptum were the dominant groups (28.0% and 25.2%), followed by the Bacteroides (8.5%). According to principal component analysis, no significant grouping with respect to geographic origin, age, or gender was observed.