994 resultados para HSV-1
Resumo:
Les virus exploitent la machinerie cellulaire de l’hôte de façon très variée et plusieurs types vont même jusqu’à incorporer certaines protéines cellulaires. Nous avons récemment effectué la première analyse protéomique du virion mature de l’Herpès simplex de type 1 (HSV-1), ce qui nous a permis de déterminer que jusqu’à 49 protéines cellulaires différentes se retrouvaient dans ce virus (Loret, S. et al. (2008). "Comprehensive characterization of extracellular herpes simplex virus type 1 virions." J Virol 82(17): 8605-18.). Afin de déterminer leur importance dans le cycle de réplication d’HSV-1, nous avons mis au point un système de criblage nous permettant de quantifier le virus produit et relâché dans le milieu extracellulaire en utilisant un virus marqué à la GFP ainsi que des petits ARN interférents (pARNi) ciblant spécifiquement ces protéines cellulaires. Cette approche nous a permis de démontrer que 17 des protéines identifiées précédemment jouaient un rôle critique dans la réplication d’HSV-1, suggérant ainsi que leur incorporation dans le virus n’est pas aléatoire. Nous avons ensuite examiné le rôle d’une de ces protéines, DDX3X (DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked), une protéine multifonctionnelle connue pour son implication dans les cycles de réplication de plusieurs virus humains. À l’aide de pARNi ainsi que de différentes lignées cellulaires, dont une lignée DDX3X thermosensible, nous avons démontré que l’inhibition de DDX3X résultait en une diminution du nombre de capsides intracellulaires et induisait une importante diminution de l’expression des gènes viraux. Nous avons aussi démontré que la fraction de DDX3X incorporée dans le virion contribuait activement au cycle infectieux d’HSV-1. Ces résultats confirment l’intérêt de notre approche afin d’étudier les interactions hôte-pathogène en plus de démontrer la contribution des protéines cellulaires incorporées à HSV-1 dans l’infection virale.
Resumo:
Pour compléter leur cycle de vie, les virus interagissent avec de nombreux facteurs de la cellule-hôte. Le virus Herpès simplex de type 1 (HSV-1) ne fait pas exception. Une récente étude protéomique du virus effectuée par notre laboratoire a permis d’identifier 49protéines cellulaires potentiellement incorporées dans les virions matures d’HSV-1 [1]. Étant donné que certaines de ces protéines peuvent jouer des rôles importants au cours du cycle de vie du virus, elles constituent des cibles de choix pour identifier et caractériser de nouvelles interactions hôte-pathogène dans le contexte d’HSV-1. D’ailleurs le laboratoire a été effectué un criblage aux petits ARN d’interférence qui a démontré qu'au moins 15 des protéines incorporées sont impliqués dans le cycle de réplication de HSV-1 en culture cellulaire (Annexe 1). Des nombreuses études rapportent l'incorporation des protéines de l'hôte dans les virions matures mais très peu abordent l'importance de la fraction des protéines cellulaires incorporée dans les virions pour le cycle virale. Pour vérifier ça, nous avons déplété ces protéines des virions matures extracellulaires en utilisant des petits ARN d’interférence. Par la suite, nous avons utilisé ces virus déplétés pour réinfecter des cellules déplétées ou normales. Cette méthode nous a permis d'identifier pour la première fois 8 protéines (DDX3X, HSPA8, KRT10, MIF, Rab5A, Rab6A, Rab10 et 14-3-3ζ) dont l'absence dans les virions réduit la production virale d'au moins 50%. Pour mieux comprendre à quelle étape du cycle viral ces protéines sont nécessaires, nous avons aussi quantifié les virus intracellulaires, produits des cellules déplétées individuellement des quinze protéines cellulaires. Ainsi, nous avons trouvé que dans nos conditions 7 de ces 8 protéines cellulaires (DDX3X, HSPA8, KRT10, MIF, Rab5A, Rab6A et Rab10) semblent impliquées dans la production des virus intracellulaires, ce qui nous a stimulés à débuter une série de tests plus approfondis de l’entrée d’HSV-1. Les résultats préliminaires, démontrent l’implication dans l’entrée d’HSV-1 d’au moins 3 à 4 de ces protéines (HSPA8, KRT10, Rab5A et Rab10).
Resumo:
Viral and bacterial associations appear to be implicated in the development of periodontal infections. Little information is available describing the periodontopathic agents in root canals with necrotic pulp. In this study, the occurrence and the combinations among herpes simplex virus type 1 (HSV-1) and Dialister pneumosintes, Tannerella forsythia.. and Treponema denticola in patients with chronic periodontitis and necrotic pulp were evaluated. Clinical samples from healthy subjects and patients with periodontal or pulp infections were analyzed using a nested polymerase chain reaction PCR to detect HSV and PCR to detect the 3 periodontal bacteria. The presence of Tannerella forsythia and Treponema denticola was observed in healthy, periodontitis, and necrotic pulp patients. HSV was observed in periodontitis and necrotic pulp patients, and no healthy subject harbored D. pneumosintes or HSV. The occurrence of Tannerella forsythia was not statistically significant in patients with necrotic pulp (P = 0.704). Periodontal bacteria were observed varying from 10.3% to 20.7% in periodontitis and necrotic pulp patients. The presence of Treponema denticola - HSV association was predominant in patients showing necrotic pulp (24.1%); however, HSV alone was observed in one patient with periodontitis and in another patient with necrotic pulp. The presence of double association among bacteria or bacteria - HSV could indicate a role in both periodontitis and necrotic pulp, and Tannerella forsythia - Treponenta denticola - HSV and Tannerella forsythia - D. pneumosintes - Treponema denticola - HSV associations might be important in periodontitis.
Resumo:
Sexually transmitted diseases (STDs) are among the largest public health problems, especially in developing countries. The acquisition of these infections during early sexual activity is common and many infections have a benign course. However, in some pathogens remain in the state of latency can be reactivated and cause productive infection that may progress to severe forms. In addition, some of them are transmitted vertically resulting in congenital infection, causing immediate damage or long-term child. The classic risk factors for sexually transmitted agents are: early onset of sexual and reproductive health, multiple sexual partners throughout life, use of oral contraceptives and co-infections with different pathogens. We present the results of a cross-sectional study aimed to estimate the prevalence of genital infection by human papillomavirus (HPV), Herpes simplex virus (HSV) and Chlamydia trachomatis (CT) in a segment of the female population of the metropolitan area Christmas, among those who enrolled voluntarily sought, Basic Health Units for the examination of cancer screening cervix in the period 2008 to 2010. All participants, a total of 261 women answered a standard questionnaire by which identified the socio-demographic characteristics, classical risk factors for STDs, reproductive and sexual activity and smoking. Of each patient were obtained two samples, one for the completion of the Pap test for detection of cellular changes and the other processed for DNA extraction and analyzed by PCR (polymerase chain reaction) to detect the three pathogens studied. The population of the study was composed of sexually active women aged between 13 and 79 years, mean 38.7 years, most of them being married, low education levels and low incomes. The majority (87%) had normal results on cytology and only 2.7% had low-grade cytological abnormalities. Prevalence rates were 37.9% for HPV, 4.6% for CT and 26% for HSV. HPV prevalence was higher in women under 25, unmarried and in those who had multiple sexual partners. Women with simultaneous infection by HSV-1 and 2 had higher prevalence of HPV infection. The prevalence of HSV infection showed no association whatsoever with the risk factors analyzed and HSV-1 was the predominant type among the cases of genital HSV infection. The overall prevalence of C. Trachomatis was relatively low, thus providing greater value in younger women aged less than or equal to 20 years
Resumo:
Herpes simplex is a virus that can be transmitted sexually and is potentially associated with vertical transmission. This study evaluated the prevalence of genital infection by herpes simplex virus (HSV) types 1 and 2 in pregnant and nonpregnant care in the city of Natal / RN, including a total of 222 women, 92 pregnant and 130 nonpregnant. The participants answered a questionnaire to obtain data and socio-demographic characteristics, as well as potential risk factors for sexually transmitted diseases. After the interview, we collected two cervical specimens, one for the Pap test and the other for DNA extraction and analyzed by polymerase chain reaction (PCR) to detect both virus serotypes. Then the women underwent a clinical examination by colposcopy. For statistical analysis, we used the chi-square and logistic regression by SSPS 17.0 Statistic. Most women were up to 30 years of age, nonwhite ethnicity, married, elementary education, family income below the poverty level; initiated sexual activity with age up to 18 years; had more than one sexual partner lifelong and was not pregnant, but has had at least one child. The HSV-1 showed a prevalence of 26.1% among pregnant women and 30.0% in non-pregnant women. While HSV-2 prevalence was found with 10.9% and 19.2% in pregnant and nonpregnant women, respectively. The largest proportion of morphological changes of the uterine cervix was detected among nonpregnant women, both in cytology and in colposcopy. The women were nonwhite ethnicity, married, became pregnant aged less than or equal to 18 years and who had one to two pregnancies had a lower risk of acquiring genital HSV infection. There was a high prevalence of genital HSV infection, HSV-1 is more prevalent than HSV-2. No association was found between morphological changes of the uterine cervix and the presence of the virus in pregnant and nonpregnant women, nor between genital HSV infection and the classic risk factors for sexually transmitted diseases
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Millions of people worldwide are currently infected with human papillomavirus (HPV), herpes simplex virus (HSV) or human immunodeficiency virus (HIV). For this enormous contingent of people, the search for preventive and therapeutic immunological approaches represents a hope for the eradication of latent infection and/or virus-associated cancer. To date, attempts to develop vaccines against these viruses have been mainly based on a monovalent concept, in which one or more antigens of a virus are incorporated into a vaccine formulation. In the present report, we designed and tested an immunization strategy based on DNA vaccines that simultaneously encode antigens for HIV, HSV and HPV. With this purpose in mind, we tested two bicistronic DNA vaccines (pIRES I and pIRES II) that encode the HPV-16 oncoprotein E7 and the HIV protein p24 both genetically fused to the HSV-1 gD envelope protein. Mice i.m. immunized with the DNA vaccines mounted antigen-specific CD8⁺ T cell responses, including in vivo cytotoxic responses, against the three antigens. Under experimental conditions, the vaccines conferred protective immunity against challenges with a vaccinia virus expressing the HIV-derived protein Gag, an HSV-1 virus strain and implantation of tumor cells expressing the HPV-16 oncoproteins. Altogether, our results show that the concept of a trivalent HIV, HSV, and HPV vaccine capable to induce CD8⁺ T cell-dependent responses is feasible and may aid in the development of preventive and/or therapeutic approaches for the control of diseases associated with these viruses.
Resumo:
The shuttle vector plasmid pZ189 was used to find the kinds of mutations that are induced by herpes simplex virus type-1 (HSV-1). In cells infected by HSV-1 the frequency of mutation in supF gene, the mutagenesis marker, was increased over background by from two- to seven-fold, reaching 0.14-0.45%. No increase was induced by infection by vaccinia virus under the same conditions. Mutagenesis was an early event, showing a four-fold increase in mutation frequency at only two hours after infection, and peaking at a seven-fold increase at four hours after infection. DNA sequencing and gel electrophoresis analysis were performed on 105 HSV-1 induced mutants and 65 spontaneous mutants and provided the following information: (1) A change in plasmid size was seen in 54% of HSV-1 related mutants, compared with only 37% of spontaneous mutants. (2) Among point mutations, the predominant type was G:C to A:T transition, which accounted for 51% of point mutations in mutants isolated from cells infected with HSV-1, and 32% of point mutations in spontaneous mutants. (3) Deletions of DNA were seen in HSV-1 related mutants at a frequency of 40%, compared with 29% in spontaneous mutants. The HSV-1 related deletions were about half the length of spontaneous mutants and three contained short filler sequences. (4) Fifteen (15%) of HSV-1 induced mutants revealed the altered restriction patterns on agarose gel electrophoresis analysis and were due either to rearrangements of plasmid DNA, and/or to insertion of sequences derived from chromosomal DNA (seven plasmids). No insertions of DNA from HSV-1 were detected. Among spontaneous mutants, only 5 (7.7%) were rearrangements and none had inserted chromosomal DNA. (5) DNA sequence analysis of seven plasmids with inserted chromosomal DNA revealed that four cases had repetitive DNA sequences integrated and the other three were unidentified sequences from the GenBank database. Three repetitive DNA included $\alpha$ satellite, Alu and KpnI family sequences. The other sequence was identified as tRNA-like component. The observed mutations have implications for the mechanism of malignant transformation of cells by HSV-1. ^
Resumo:
This study aimed to exploit bacterial artificial chromosomes (BAC) as large antigen-capacity DNA vaccines (BAC-VAC) against complex pathogens, such as herpes simplex virus 1 (HSV-1). The 152-kbp HSV-1 genome recently has been cloned as an F-plasmid-based BAC in Escherichia coli (fHSV), which can efficiently produce infectious virus progeny upon transfection into mammalian cells. A safe modification of fHSV, fHSVΔpac, does not give rise to progeny virus because the signals necessary to package DNA into virions have been excluded. However, in mammalian cells fHSVΔpac DNA can still replicate, express the HSV-1 genes, cause cytotoxic effects, and produce virus-like particles. Because these functions mimic the lytic cycle of the HSV-1 infection, fHSVΔpac was expected to stimulate the immune system as efficiently as a modified live virus vaccine. To test this hypothesis, mice were immunized with fHSVΔpac DNA applied intradermally by gold-particle bombardment, and the immune responses were compared with those induced by infection with disabled infectious single cycle HSV-1. Immunization with either fHSVΔpac or disabled infectious single cycle HSV-1 induced the priming of HSV-1-specific cytotoxic T cells and the production of virus-specific antibodies and conferred protection against intracerebral injection of wild-type HSV-1 at a dose of 200 LD50. Protection probably was cell-mediated, as transfer of serum from immunized mice did not protect naive animals. We conclude that BAC-VACs per se, or in combination with genetic elements that support replicative amplification of the DNA in the cell nucleus, represent a useful new generation of DNA-based vaccination strategies for many viral and nonviral antigens.
Resumo:
The herpesvirus entry mediator C (HveC), previously known as poliovirus receptor-related protein 1 (PRR1), and the herpesvirus Ig-like receptor (HIgR) are the bona fide receptors employed by herpes simplex virus-1 and -2 (HSV-1 and -2) for entry into the human cell lines most frequently used in HSV studies. They share an identical ectodomain made of one V and two C2 domains and differ in transmembrane and cytoplasmic regions. Expression of their mRNA in the human nervous system suggests possible usage of these receptors in humans in the path of neuron infection by HSV. Glycoprotein D (gD) is the virion component that mediates HSV-1 entry into cells by interaction with cellular receptors. We report on the identification of the V domain of HIgR/PRR1 as a major functional region in HSV-1 entry by several approaches. First, the epitope recognized by mAb R1.302 to HIgR/PRR1, capable of inhibiting infection, was mapped to the V domain. Second, a soluble form of HIgR/PRR1 consisting of the single V domain competed with cell-bound full-length receptor and blocked virion infectivity. Third, the V domain was sufficient to mediate HSV entry, as an engineered form of PRR1 in which the two C2 domains were deleted and the V domain was retained and fused to its transmembrane and cytoplasmic regions was still able to confer susceptibility, although at reduced efficiency relative to full-length receptor. Consistently, transfer of the V domain of HIgR/PRR1 to a functionally inactive structural homologue generated a chimeric receptor with virus-entry activity. Finally, the single V domain was sufficient for in vitro physical interaction with gD. The in vitro binding was specific as it was competed both by antibodies to the receptor and by a mAb to gD with potent neutralizing activity for HSV-1 infectivity.
Resumo:
The infected cell protein no. 0 (ICP0) of herpes simplex virus 1 (HSV-1) is a promiscuous transactivator shown to enhance the expression of gene introduced into cells by infection or transfection. At the molecular level, ICP0 is a 775-aa ring finger protein localized initially in the nucleus and late in infection in the cytoplasm and mediates the degradation of several proteins and stabilization of others. None of the known functions at the molecular level account for the apparent activity of ICP0 as a transactivator. Here we report that ICP0 functionally interacts with cellular transcription factor BMAL1, a member of the basic helix–loop–helix PER-ARNT-SIM (PAS) super family of transcriptional regulators. Specifically, sequences mapped to the exon II of ICP0 interacted with BMAL1 in the yeast two-hybrid system and in reciprocal pull-down experiments in vitro. Moreover, the enhancement of transcription of a luciferase reporter construct whose promoter contained multiple BMAL1-binding sites by ICP0 and BMAL1 was significantly greater than that observed by ICP0 or BMAL1 alone. Although the level of BMAL1 present in nuclei of infected cells remained unchanged between 3 and 8 h after infection, the level of cytoplasmic BMAL1 was reduced at 8 h after infection. The reduction of cytoplasmic BMAL1 was significantly greater in cells infected with the ICP0-null mutant than in the wild-type virus-infected cells, suggesting that ICP0 mediates partial stabilization of the protein. These results indicate that ICP0 interacts physically and functionally with at least one cellular transcription-regulatory factor.
Resumo:
The development of an effective vaccine for human immunodeficiency virus type 1 (HIV-1) would be a major advance toward controlling the AIDS pandemic. Several disparate strategies for a safe and effective HIV vaccine have been proposed. Recent data suggest that loss-of-function live-attenuated virus could be a safe lentivirus vaccine. Here, we propose a gain-of-function approach that can complement loss-of-function in enhancing the safety profile of a live-attenuated virus. We describe an example in which ganciclovir (GCV) was used to treat effectively nef(-)HIV-1 engineered to express herpes simplex virus (HSV-1) thymidine kinase (TK). This treatment was found to be highly efficient in controlling HIV-1 spread in tissue culture and in a small animal (hu-PBL-SCID) model. We demonstrate that one distinct advantage of GCV-HSV-TK treatment is the elimination of integrated proviruses, a goal not easily achieved with other antiretrovirals.
Resumo:
The high incidence of neurological disorders in patients afflicted with acquired immunodeficiency syndrome (AIDS) may result from human immunodeficiency virus type 1 (HIV-1) induction of chemotactic signals and cytokines within the brain by virus-encoded gene products. Transforming growth factor beta1 (TGF-beta1) is an immunomodulator and potent chemotactic molecule present at elevated levels in HIV-1-infected patients, and its expression may thus be induced by viral trans-activating proteins such as Tat. In this report, a replication-defective herpes simplex virus (HSV)-1 tat gene transfer vector, dSTat, was used to transiently express HIV-1 Tat in glial cells in culture and following intracerebral inoculation in mouse brain in order to directly determine whether Tat can increase TGF-beta1 mRNA expression. dSTat infection of Vero cells transiently transfected by a panel of HIV-1 long terminal repeat deletion mutants linked to the bacterial chloramphenicol acetyltransferase reporter gene demonstrated that vector-expressed Tat activated the long terminal repeat in a trans-activation response element-dependent fashion independent of the HSV-mediated induction of the HIV-1 enhancer, or NF-kappaB domain. Northern blot analysis of human astrocytic glial U87-MG cells transfected by dSTat vector DNA resulted in a substantial increase in steady-state levels of TGF-beta1 mRNA. Furthermore, intracerebral inoculation of dSTat followed by Northern blot analysis of whole mouse brain RNA revealed an increase in levels of TGF-beta1 mRNA similar to that observed in cultured glial cells transfected by dSTat DNA. These results provided direct in vivo evidence for the involvement of HIV-1 Tat in activation of TGF-beta1 gene expression in brain. Tat-mediated stimulation of TGF-beta1 expression suggests a novel pathway by which HIV-1 may alter the expression of cytokines in the central nervous system, potentially contributing to the development of AIDS-associated neurological disease.
Resumo:
Herpes simplex virus type 1 (HSV-1) thymidine kinase is currently used as a suicide agent in the gene therapy of cancer. This therapy is based on the preferential phosphorylation of nucleoside analogs by tumor cells expressing HSV-1 thymidine kinase. However, the use of HSV-1 thymidine kinase is limited in part by the toxicity of the nucleoside analogs. We have used random sequence mutagenesis to create new HSV-1 thymidine kinases that, compared with wild-type thymidine kinase, render cells much more sensitive to specific nucleoside analogs. A segment of the HSV-1 thymidine kinase gene at the putative nucleoside binding site was substituted with random nucleotide sequences. Mutant enzymes that demonstrate preferential phosphorylation of the nucleoside analogs, ganciclovir or acyclovir, were selected from more than one million Escherichia coli transformants. Among the 426 active mutants we have isolated, 26 demonstrated enhanced sensitivity to ganciclovir, and 54 were more sensitive to acyclovir. Only 6 mutant enzymes displayed sensitivity to both ganciclovir and acyclovir when expressed in E. coli. Analysis of 3 drug-sensitive enzymes demonstrated that 1 produced stable mammalian cell transfectants that are 43-fold more sensitive to ganciclovir and 20-fold more sensitive to acyclovir.
Resumo:
The herpes simplex virus 1 (HSV-1) genome encodes seven polypeptides that are required for its replication. These include a heterodimeric DNA polymerase, a single-strand-DNA-binding protein, a heterotrimeric helicase/primase, and a protein (UL9 protein) that binds specifically to an HSV-1 origin of replication (oris). We demonstrate here that UL9 protein interacts specifically with the 180-kDa catalytic subunit of the cellular DNA polymerase alpha-primase. This interaction can be detected by immunoprecipitation with antibodies directed against either of these proteins, by gel mobility shift of an oris-UL9 protein complex, and by stimulation of DNA polymerase activity by the UL9 protein. These findings suggest that enzymes required for cellular DNA replication also participate in HSV-1 DNA replication.