956 resultados para HPA axis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcoholism is a disorder marked by cycles of heavy drinking and chronic relapse, and adolescents are an age cohort particularly susceptible to consuming large amounts of alcohol, placing them at high risk for developing an alcohol use disorder. Adolescent humans and rats voluntarily consume more alcohol than their adult counterparts, suggesting that younger consumers of alcohol may be less sensitive to its aversive effects, which are regulated by the function of the hypothalamic-pituitary-adrenal (HPA) stress axis. While HPA axis dysfunction resulting from ethanol exposure has been extensively studied in adult animals, what happens in the adolescent brain remains largely unclear. In this study, chronic injections of ethanol was used to model alcohol dependence in adult and adolescent rats, and post-withdrawal anxiety behaviors were measured using light-dark box testing. Furthermore, corticosterone (CORT) release during treatment and after withdrawal was measured by collecting fecal and plasma samples from adults and adolescents. It was found that adults, but not adolescents, exhibit significant anxiety-like behavior following chronic ethanol withdrawal. Additionally, while the process of chronic ethanol treatment elicits an increase in day-by-day CORT release in both adults and adolescents, significantly sustained levels of CORT were not observed during withdrawal for either age group. Moreover, it was found that adults experience a longer-lasting CORT increase during chronic treatment, suggesting a larger and more robust period of dysfunction in the HPA axis for older consumers of alcohol. These results highlight CORT and glucocorticoids in general as a potential therapeutic target for treatment for alcoholism, especially that which has an onset during adolescence.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glucocorticoid hormones are critical to respond and adapt to stress. Genetic variations in the glucocorticoid receptor (GR) gene alter hypothalamic-pituitary-adrenal (HPA) axis activity and associate with hypertension and susceptibility to metabolic disease. Here we test the hypothesis that reduced GR density alters blood pressure and glucose and lipid homeostasis and limits adaption to obesogenic diet. Heterozygous GR βgeo/+ mice were generated from embryonic stem (ES) cells with a gene trap integration of a β-galactosidase-neomycin phosphotransferase (βgeo) cassette into the GR gene creating a transcriptionally inactive GR fusion protein. Although GRβgeo/+ mice have 50% less functional GR, they have normal lipid and glucose homeostasis due to compensatory HPA axis activation but are hypertensive due to activation of the renin-angiotensin- aldosterone system (RAAS). When challenged with a high-fat diet, weight gain, adiposity, and glucose intolerance were similarly increased in control and GRβgeo/+ mice, suggesting preserved control of intermediary metabolism and energy balance. However, whereas a high-fat diet caused HPA activation and increased blood pressure in control mice, these adaptions were attenuated or abolished in GRβgeo/+ mice. Thus, reduced GR density balanced by HPA activation leaves glucocorticoid functions unaffected but mineralocorticoid functions increased, causing hypertension. Importantly, reduced GR limits HPA and blood pressure adaptions to obesogenic diet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The past two decades have seen substantial gains in our understanding of the complex processes underlying disturbed brain-gut communication in disorders such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Despite a growing understanding of the neurobiology of brain-gut axis dysfunction, there is a relative paucity of investigations into how the various factors involved in dysregulating the brain-gut axis, including stress, immune activation and pain, could impact on fundamental brain processes such as cognitive performance. To this end, we proposed a cognitive neurobiology of brain-gut axis dysfunction and took a novel approach to examine how disturbed brain-gut interactions may manifest as altered cognitive performance in IBS and IBD, both cross-sectionally and prospectively. We have demonstrated that, disorders of the brain-gut axis are characterised by stable deficits in specific cognitive domains. Specifically, patients with IBS exhibit a consistent hippocampal mediated visuospatial memory impairment. In addition we have found evidence to suggest a similar visuospatial impairment in IBD. However, our most consistent finding within this population was that patients with Crohn’s disease exhibit impaired selective attention/ response inhibition on the classic Stroop interference test. These cognitive deficits may serve to perpetuate and sustain brain-gut axis dysfunction. Furthermore, this research has shed light on some of the underlying neurobiological mechanisms that may be mediating cognitive dysfunction in IBS. Our findings may have significant implications for the individual who suffers from a brain-gut axis disorder and may also inform future treatment strategies. Taken together, these findings can be incorporated into existing neurobiological models of brain-gut axis dysfunction, to develop a more comprehensive model accounting for the cognitive-neurobiology of brain-gut axis disorders. This has furthered our understanding of disease pathophysiology and may ultimately aid in both the diagnosis and treatment of these highly prevalent, but poorly understood disorders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study used the novel approach of statistical modelling to investigate the control of hypothalamic-pituitary-adrenal (HPA) axis and quantify temporal relationships between hormones. Two experimental paradigms were chosen, insulin-induced hypoglycaemia and 2 h transport, to assess differences in control between noncognitive and cognitive stimuli. Vasopressin and corticotropin-releasing hormone (CRH) were measured in hypophysial portal plasma, and adrenocorticotropin hormone (ACTH) and cortisol in jugular plasma of conscious sheep, and deconvolution analysis was used to calculate secretory rates, before modelling. During hypoglycaemia, the relationship between plasma glucose and vasopressin or CRH was best described by log(10) transforming variables (i.e. a positive power-curve relationship). A negative-feedback relationship with log(10) cortisol concentration 2 h previously was detected. Analysis of the 'transport' stimulus suggested that the strength of the perceived stimulus decreased over time after accounting for cortisol facilitation and negative-feedback. The time course of vasopressin and CRH responses to each stimulus were different However, at the pituitary level, the data suggested that log(10) ACTH secretion rate was related to log(10) vasopressin and CRH concentrations with very similar regression coefficients and an identical ratio of actions (2.3 : 1) for both stimuli. Similar magnitude negative-feedback effects of log(10) cortisol at -110 min (hypoglycaemia) or -40 min (transport) were detected, and both models contained a stimulatory relationship with cortisol at 0 min (facilitation). At adrenal gland level, cortisol secretory rates were related to simultaneously measured untransformed ACTH concentration but the regression coefficient for the hypoglycaemia model was 2.5-fold greater than for transport. No individual sustained maximum cortisol secretion for longer than 20 min during hypoglycaemia and 40 min during transport. These unique models demonstrate that corticosteroid negative-feedback is a significant control mechanism at both the pituitary and hypothalamus. The amplitude of HPA response may be related to stimulus intensity and corticosteroid negative-feedback, while duration depended on feedback alone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The temporal organization of mammals presents a daily adjustment to the environmental light/dark cycle. The environmental light detected by the retina adjusts the central clock in the suprachiasmatic nuclei, which innervate the pineal gland through a polysynaptic pathway. During the night, this gland produces and releases the nocturnal hormone melatonin, which circulates throughout the whole body and adjusts several bodily functions according to the existence and duration of darkness. We have previously shown that during the time frame of an inflammatory response, pro-inflammatory cytokines, such as tumor necrosis factor-a, inhibit while anti-inflammatory mediators, such as glucocorticoids, enhance the synthesis of melatonin, interfering in the daily adjustment of the light/dark cycle. Therefore, injury disconnects the organism from environmental cycling, while recovery restores the light/dark information to the whole organism. Here, we extend these observations by evaluating the effect of a mild restraint stress, which did not induce macroscopic gastric lesions. After 2 h of restraint, there was an increase in circulating corticosterone, indicating activation of the hypothalamus-pituitary-adrenal (HPA) axis. In parallel, an increase in melatonin production was observed. Taking into account the data obtained with models of inflammation and stress, we reinforce the hypothesis that the activity of the pineal gland is modulated by the state of the immune system and the HPA axis, implicating the darkness hormone melatonin as a modulator of defense responses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is evidence that levels of adipose tissue can influence responses of the hypothalamopituitary-adrenal (HPA) axis to stress in humans and rats but this has not been explored in sheep. Also, little is known about the sympathoadrenal responses to stress in individuals with relatively different levels of adipose tissue. We tested the hypothesis that the stress-induced activation of the HPA axis and sympathoadrenal system is lower in ovariectomized ewes with low levels of body fat (lean) than ovariectomized ewes with high levels of body fat (fat). Ewes underwent dietary manipulation for 3 months to yield a group of lean ewes (n = 7) with a mean (±SEM) live weight of 39.1 ± 0.9 kg and body fat of 8.9 ± 0.6% and fat ewes (n = 7) with a mean (±SEM) live weight of 69.0 ± 1.8 kg and body fat of 31.7 ± 3.4%. Fat ewes also had higher circulating concentrations of leptin than lean ewes. Blood samples were collected every 15 min over 8 h when no stress was imposed (control day) and on a separate day when 4 h of isolation/restraint was imposed after 4 h of pretreatment sampling (stress day). Plasma concentrations of adrenocorticotropic hormone (ACTH), cortisol, epinephrine and norepinephrine did not change significantly over the control day and did not differ between lean and fat ewes. Stress did not affect plasma leptin levels. All stress hormones increased significantly during isolation/restraint stress. The ACTH, cortisol and epinephrine responses were greater in fat ewes than lean ewes but norepinephrine responses were similar. Our results suggest that relative levels of adipose tissue influence the stress-induced activity of the hypothalamopituitary-adrenal axis and some aspects of the sympathoadrenal system with fat animals having higher responses than lean animals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated the effect of the presence and absence of lambs and suckling by lambs to attenuate activation of the hypothalamo-pituitary-adrenal (HPA) axis to isolation and restraint stress in lactating sheep. In experiment 1, blood samples were collected every 10 min from nonlactating (n = 5) and lactating (n = 5) ewes for 4 h before and during stress. In experiment 2, ewes (n = 6) were allocated to 1) nonlactating, 2) lactating with lambs absent, 3) lactating with lambs present but unable to suckle, and 4) lactating with lambs present and able to suckle. Blood samples were collected over 8 h with no stress (control day) and for 4 h before and 4 h during stress (stress day). In experiment 1, the mean (±SEM) cortisol concentrations increased significantly (P < 0.05) in nonlactating ewes during stress but did not change in lactating ewes. In experiment 2, cortisol did not vary on the control day or pretreatment of the stress day but increased (P < 0.05) during stress in all groups except lactating ewes with lambs present and able to suckle. The greatest cortisol response occurred in nonlactating ewes followed by lactating ewes with lambs absent and lactating ewes with lambs present but unable to suckle. During stress, the ACTH concentrations increased (P < 0.05) in nonlactating ewes and lactating ewes with lambs absent but not in lactating ewes with lambs present. We conclude that the activity of the HPA axis during isolation and restraint is reduced in lactating ewes and that the presence of lambs increases this level of attenuation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent investigations have implicated the medial prefrontal cortex (mPFC) in modulation of subcortical pathways that contribute to the generation of behavioural, autonomic and endocrine responses to stress. However, little is known of the mechanisms involved. One of the key neurotransmitters involved in mPFC function is dopamine, and we therefore aimed, in this investigation, to examine the role of mPFC dopamine in response to stress in Wistar rats. In this regard, we infused dopamine antagonists SCH23390 or sulpiride into the mPFC via retrodialysis. We then examined changes in numbers of cells expressing the c-fos immediate-early gene protein product, Fos, in subcortical neuronal populations associated with regulation of hypothalamic-pituitary-adrenal (HPA) axis stress responses in response to either of two stressors; systemic injection of interleukin-1β, or air puff. The D1 antagonist, SCH23390, and the D2 antagonist, sulpiride, both attenuated expression of Fos in the medial parvocellular hypothalamic paraventricular nucleus (mpPVN) corticotropin-releasing factor cells at the apex of the HPA axis, as well as in most extra-hypothalamic brain regions examined in response to interleukin-1β. By contrast, SCH23390 failed to affect Fos expression in response to air puff in any brain region examined, while sulpiride resulted in an attenuation of the air puff-induced response in only the mpPVN and the bed nucleus of the stria terminalis. These results indicate that the mPFC differentially processes the response to different stressors and that the two types of dopamine receptor may have different roles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Medial parvocellular paraventricular corticotropin-releasing hormone (mPVN CRH) cells are critical in generating hypothalamic-pituitary-adrenal (HPA) axis responses to systemic interleukin-1beta (IL-1beta). However, although it is understood that catecholamine inputs are important in initiating mPVN CRH cell responses to IL-1beta, the contributions of distinct brainstem catecholamine cell groups are not known. We examined the role of nucleus tractus solitarius (NTS) and ventrolateral medulla (VLM) catecholamine cells in the activation of mPVN CRH, hypothalamic oxytocin (OT) and central amygdala cells in response to IL-1beta (1 microg/kg, i.a.). Immunolabelling for the expression of c-fos was used as a marker of neuronal activation in combination with appropriate cytoplasmic phenotypic markers. First we confirmed that PVN 6-hydroxydopamine lesions, which selectively depleted catecholaminergic terminals, significantly reduced IL-1beta-induced mPVN CRH cell activation. The contribution of VLM (A1/C1 cells) versus NTS (A2 cells) catecholamine cells to mPVN CRH cell responses was then examined by placing ibotenic acid lesions in either the VLM or NTS. The precise positioning of these lesions was guided by prior retrograde tracing studies in which we mapped the location of IL-1beta-activated VLM and NTS cells that project to the mPVN. Both VLM and NTS lesions reduced the mPVN CRH and OT cell responses to IL-1beta. Unlike VLM lesions, NTS lesions also suppressed the recruitment of central amygdala neurons. These studies provide novel evidence that both the NTS and VLM catecholamine cells have important, but differential, contributions to the generation of IL-1beta-induced HPA axis responses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is not clear if higher levels of cardiorespiratory fitness are associated with lower hypothalamo-pituitary adrenal (HPA) axis and sympatho-adrenal medullary (SAM) system reactivity to psychological stress in women. The association between cardio-metabolic risk markers and acute physiological responses to psychological stress in women who differ in their cardiorespiratory fitness status has also not been investigated. Women with high (n = 22) and low (n = 22) levels of fitness aged 30-50 years (in the mid-follicular phase of the menstrual cycle) were subjected to a Trier Social Stress Test (TSST) at 1500 h. Plasma concentrations of cortisol, adrenaline (Adr), noradrenaline (NA), and dopamine (DA) were measured in samples collected every 7-15 min from 1400 to 1700 h. Heart rate and blood pressure were measured at the same time points. Low-fit women had elevated serum triglyceride, cholesterol/HDL ratio, fasting glucose, and HOMA-IR levels compared with high-fit women. While cortisol, Adr, NA, HR, and blood pressure all demonstrated a significant response to the TSST, the responses of these variables did not differ significantly between high- and low-fit women in response to the TSST. Dopamine reactivity was significantly higher in the low-fit women compared with high-fit women. There was also a significant negative correlation between VO2 max and DA reactivity. These findings suggest that, for low-fit women aged 30-50 years, the response of HPA axis and SAM system to a potent acute psychological stressor is not compromised compared to that in high-fit women.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stress induced a decrease in the reactivity of the aorta to noradrenaline (NA), as a consequence of an endothelial nitric oxide (NO) system hyperactivity. The main characteristic of the stress response is activation of the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic adrenomedullary (SA) system. The participation of the HPA axis and SA system in the decreased reactivity to NA in the aorta of rats exposed to 4-h immobilization was investigated. Concentration-response relationships for NA were obtained in the aorta, with and without endothelium, isolated from normal and stressed rats, following these procedures: (1) in the absence and presence of L-NAME; (2) after adrenalectomy (ADX) or not, in the absence or presence of L-NAME; (3) ADX rats treated or not with corticosterone; (4) ADX associated with stress; and (5) treated or not with reserpine. The reactivity of aorta without endothelium was unaffected by the procedures. The reactivity of aorta with endothelium was decreased by either stress or ADX. This effect was reversed by both L-NAME and corticosterone. ADX did not potentiate the decrease in the aorta reactivity induced by stress. Reserpine did not change the reactivity of aorta with endothelium from normal rats, but prevented the decrease in reactivity induced by stress. It is concluded that the HPA axis participates in endothelium-dependent modulation of aorta reactivity in normal conditions and that thr SA system participates in hyperactivity of the endothelial NO-system induced by stress, which is responsible for the decreased aorta reactivity to NA. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim. To investigate the effects of physical training associated to dexamethasone administration in carbohydrate metabolism and adrenocorticotrophic hormone (ACTH) release. Materials and methods. Young Wistar rats were divided into four groups: sedentary control (CS), sedentary dexanzethasone (DxS), trained control (CT) and trained dexamethasone (DxT). The rats were submitted to swimming training associate to administration of dexamethasone for ten weekends. Before sacrifice the rats received Subcutaneous insulin to calculate the maximum decreased in blood glucose. Venous blood was sampled obtained at the end experiment period to determine glucose, insulin, free fatty acids (FFA) and ACTH. Gastrocnemius and liver tissue samples were used to determination glycogen, and adipose epididimal tissue was used to measured the weight. Results. Dexamethasone administration provoke insulin resistance and the physical training reverted this aspect. Training promoted increase in muscle and liver glycogen store and a high utilization of FFA. Moreover the dexamethasone provoke decreased of ACTH release in response to acute exercise, showing marked differences in the functioning of the hypothalamy pituitary-adrenal (HPA) axis between groups of rats. Conclusions. a) Low-dose of dexamethasone promote several side effects in metabolism intermediary and chronic exposure to steroid was associated with insulin resistance; b) the regular swimming exercise promoted increased insulin sensitiviry Therefore. exercise can override the dexametasone negative feedback of the HPA axis activation in rats.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A previous study identified the peroxisome proliferator-activated receptor alpha (PPARalpha) activation biomarkers 21-steroid carboxylic acids 11beta-hydroxy-3,20-dioxopregn-4-en-21-oic acid (HDOPA) and 11beta,20-dihydroxy-3-oxo-pregn-4-en-21-oic acid (DHOPA). In the present study, the molecular mechanism and the metabolic pathway of their production were determined. The PPARalpha-specific time-dependent increases in HDOPA and 20alpha-DHOPA paralleled the development of adrenal cortex hyperplasia, hypercortisolism, and spleen atrophy, which was attenuated in adrenalectomized mice. Wy-14,643 activation of PPARalpha induced hepatic FGF21, which caused increased neuropeptide Y and agouti-related protein mRNAs in the hypothalamus, stimulation of the agouti-related protein/neuropeptide Y neurons, and activation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in increased adrenal cortex hyperplasia and corticosterone production, revealing a link between PPARalpha and the HPA axis in controlling energy homeostasis and immune regulation. Corticosterone was demonstrated as the precursor of 21-carboxylic acids both in vivo and in vitro. Under PPARalpha activation, the classic reductive metabolic pathway of corticosterone was suppressed, whereas an alternative oxidative pathway was uncovered that leads to the sequential oxidation on carbon 21 resulting in HDOPA. The latter was then reduced to the end product 20alpha-DHOPA. Hepatic cytochromes P450, aldehyde dehydrogenase (ALDH3A2), and 21-hydroxysteroid dehydrogenase (AKR1C18) were found to be involved in this pathway. Activation of PPARalpha resulted in the induction of Aldh3a2 and Akr1c18, both of which were confirmed as target genes through introduction of promoter luciferase reporter constructs into mouse livers in vivo. This study underscores the power of mass spectrometry-based metabolomics combined with genomic and physiologic analyses in identifying downstream metabolic biomarkers and the corresponding upstream molecular mechanisms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heroin dependence is associated with a stressful environment and with dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. The present study examined the acute effects of intravenous heroin versus placebo on the HPA axis response in heroin-dependent patients. Twenty-eight heroin-dependent patients in heroin-assisted treatment and 20 age- and sex-matched healthy participants were included in a controlled trial in which patients were twice administered heroin or saline in a crossover design, and healthy controls were only administered saline. The HPA axis response was measured by adrenocorticotropic hormone (ACTH) levels and by cortisol levels in serum and saliva before and 20 and 60 minutes after substance administration. Craving, withdrawal, and anxiety levels were measured before and 60 minutes after substance application. Plasma concentrations of heroin and its main metabolites were assessed using high-performance liquid chromatography. Heroin administration reduces craving, withdrawal, and anxiety levels and leads to significant decreases in ACTH and cortisol concentrations (P < 0.01). After heroin administration, cortisol concentrations did not differ from healthy controls, and ACTH levels were significantly lower (P < 0.01). In contrast, when patients receive saline, all hormone levels were significantly higher in patients than in healthy controls (P < 0.01). Heroin-dependent patients showed a normalized HPA axis response compared to healthy controls when they receive their regular heroin dose. These findings indicate that regular opioid administration protects addicts from stress and underscore the clinical significance of heroin-assisted treatment for heroin-dependent patients.