940 resultados para HOST-GUEST INTERACTIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 microm. Cell enlargement was observed in vivo, producing cells up to 100 microm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aDelta pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED: The human fungal pathogen Cryptococcus neoformans is capable of infecting a broad range of hosts, from invertebrates like amoebas and nematodes to standard vertebrate models such as mice and rabbits. Here we have taken advantage of a zebrafish model to investigate host-pathogen interactions of Cryptococcus with the zebrafish innate immune system, which shares a highly conserved framework with that of mammals. Through live-imaging observations and genetic knockdown, we establish that macrophages are the primary immune cells responsible for responding to and containing acute cryptococcal infections. By interrogating survival and cryptococcal burden following infection with a panel of Cryptococcus mutants, we find that virulence factors initially identified as important in causing disease in mice are also necessary for pathogenesis in zebrafish larvae. Live imaging of the cranial blood vessels of infected larvae reveals that C. neoformans is able to penetrate the zebrafish brain following intravenous infection. By studying a C. neoformans FNX1 gene mutant, we find that blood-brain barrier invasion is dependent on a known cryptococcal invasion-promoting pathway previously identified in a murine model of central nervous system invasion. The zebrafish-C. neoformans platform provides a visually and genetically accessible vertebrate model system for cryptococcal pathogenesis with many of the advantages of small invertebrates. This model is well suited for higher-throughput screening of mutants, mechanistic dissection of cryptococcal pathogenesis in live animals, and use in the evaluation of therapeutic agents. IMPORTANCE: Cryptococcus neoformans is an important opportunistic pathogen that is estimated to be responsible for more than 600,000 deaths worldwide annually. Existing mammalian models of cryptococcal pathogenesis are costly, and the analysis of important pathogenic processes such as meningitis is laborious and remains a challenge to visualize. Conversely, although invertebrate models of cryptococcal infection allow high-throughput assays, they fail to replicate the anatomical complexity found in vertebrates and, specifically, cryptococcal stages of disease. Here we have utilized larval zebrafish as a platform that overcomes many of these limitations. We demonstrate that the pathogenesis of C. neoformans infection in zebrafish involves factors identical to those in mammalian and invertebrate infections. We then utilize the live-imaging capacity of zebrafish larvae to follow the progression of cryptococcal infection in real time and establish a relevant model of the critical central nervous system infection phase of disease in a nonmammalian model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento, Ciências do Mar, especialidade de Biologia Marinha, 19 de Dezembro de 2015, Universidade dos Açores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first mycetome was discovered more than 340 yr ago in the human louse. Despite the remarkable biology and medical and social importance of human lice, its primary endosymbiont has eluded identification and characterization. Here, we report the host-symbiont interaction of the mycetomic bacterium of the head louse Pediculus humanus capitis and the body louse P. h. humanus. The endosymbiont represents a new bacterial lineage in the -Proteobacteria. Its closest sequenced relative is Arsenophonus nasoniae, from which it differs by more than 10%. A. nasoniae is a male-killing endosymbiont of jewel wasps. Using microdissection and multiphoton confocal microscopy, we show the remarkable interaction of this bacterium with its host. This endosymbiont is unique because it occupies sequentially four different mycetomes during the development of its host, undergoes three cycles of proliferation, changes in length from 2–4 µm to more than 100 µm, and has two extracellular migrations, during one of which the endosymbionts have to outrun its host’s immune cells. The host and its symbiont have evolved one of the most complex interactions: two provisional or transitory mycetomes, a main mycetome and a paired filial mycetome. Despite the close relatedness of body and head lice, differences are present in the mycetomic provisioning and the immunological response.—Perotti, M. A., Allen, J. M., Reed, D. L., Braig, H. R. Host-symbiont interactions of the primary endosymbiont of human head and body lice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interplay between coevolutionary and population or community dynamics is currently the focus of much empirical and theoretical consideration. Here, we develop a simulation model to study the coevolutionary and population dynamics of a hypothetical host-parasitoid interaction. In the model, host resistance and parasitoid virulence are allowed to coevolve. We investigate how trade-offs associated with these traits modify the system's coevolutionary and population dynamics. The most important influence on these dynamics comes from the incorporation of density-dependent costs of resistance ability. We find three main outcomes. First, if the costs of resistance are high, then one or both of the players go extinct. Second, when the costs of resistance are intermediate to low, cycling population and coevolutionary dynamics are found, with slower evolutionary changes observed when the costs of virulence are also low. Third, when the costs associated with resistance and virulence are both high, the hosts trade-off resistance against fecundity and invest little in resistance. However, the parasitoids continue to invest in virulence, leading to stable host and parasitoid population sizes. These results support the hypothesis that costs associated with resistance and virulence will maintain the heritable variation in these traits found in natural populations and that the nature of these trade-offs will greatly influence the population dynamics of the interacting species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex metabolic relationships between the host and its microbiota change throughout life and vary extensively between individuals, affecting disease risk factors and therapeutic responses through drug metabolism. Elucidating the biochemical mechanisms underlying this human supraorganism symbiosis is yielding new therapeutic insights to improve human health, treat disease, and potentially modify human disease risk factors. Therapeutic options include targeting drugs to microbial genes or co-regulated host pathways and modifying the gut microbiota through diet, probiotic and prebiotic interventions, bariatric surgery, fecal transplants, or ecological engineering. The age-associated co-development of the host and its microbiota provides a series of windows for therapeutic intervention from early life through old age

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of 4-nerolidylcatechol (4-NRC), a potent antioxidant agent, and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was investigated by the solubility method using Fourier transform infrared (FTIR) methods in addition to UV-Vis, (1)H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The inclusion complexes were prepared using grinding, kneading and freeze-drying methods. According to phase solubility studies in water a B(S)-type diagram was found, displaying a stoichiometry complexation of 2:1 (drug:host) and stability constant of 6494 +/- A 837 M(-1). Stoichiometry was established by the UV spectrophotometer using Job`s plot method and, also confirmed by molecular modeling. Data from (1)H-NMR, and FTIR, experiments also provided formation evidence of an inclusion complex between 4-NRC and HP-beta-CD. 4-NRC complexation indeed led to higher drug solubility and stability which could probably be useful to improve its biological properties and make it available to oral administration and topical formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infection of young poults with turkey coronavirus (TCoV) produces a syndrome characterized by acute enteritis, diarrhea, anorexia, ruffled feathers, decreased body weight gain and uneven flock growth. The objective of this study was to standardize an intestinal organ culture (IOC) in order to assess host-virus interaction related to apoptosis. For this purpose the Brazilian strain (TCoV/Brazil/2006 with GenBank accession number FJ188401), was used for infection. Infected IOC cells had mitochondrial dysfunction and initial nuclear activation with MTT value of 90.7 (± 2.4) and apoptotic factor 2.21 (± 2.1), considered statistically different from uninfected IOC cells (p > 0.05). The kinetics of TCoV antigens and viral RNA was directly correlated to annexin-V, caspases- 2 and -3, p53, BCl-2 antigens at 24, 72 and 96 h post-infection (p.i.). Morphological and biochemical features of apoptosis, such as in situ nuclear fragmentation (TUNEL and annexin-V) and DNA ladder formation were also detected in infected cells at all assayed p.i. intervals. Moreover, different from other coronaviruses, the expression of both effective caspase-2 and - 3 and p53 antigens were considered lower. However, at all p.i., the BCl-2 antigens were expressed quantitatively and qualitatively as viral antigen measured by immunofluorescence microscopy analysis. Because the diagnosis of TCoV infection is only performed by infecting embryonated poult eggs, the pathological characteri tics related to host-virus interaction remain unclear. This is the first report on apoptosis of TCoV infected IOC, and reveals that it may be useful immunological method to assess virus pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central nervous system (CNS) tuberculosis (TB) is the most severe form of TB, characterized morphologically by brain granulomas and tuberculous meningitis (TBM). Experimental strategies for the study of the host-pathogen interaction through the analysis of granulomas and its intrinsic molecular mechanisms could provide new insights into the neuropathology of TB. To verify whether cerebellar mycobacterial infection induces the main features of the disease in human CNS and better understand the physiological mechanisms underlying the disease, we injected bacillus Calmette-Guerin (BCG) into the mouse cerebellum. BCG-induced CNS-TB is characterized by the formation of granulomas and TBM, a build up of bacterial loads in these lesions, and microglial recruitment into the lesion sites. In addition, there is an enhanced expression of signaling molecules such as nuclear factor-kappa B (NF-kappa B) and there is a presence of inducible nitric oxide synthase (iNOS) in the lesions and surrounding areas. This murine model of cerebellar CNS-TB was characterized by cellular and biochemical immune responses typically found in the human disease. This model could expand our knowledge about granulomas in TB infection of the cerebellum, and help characterize the physiological mechanisms involved with the progression of this serious illness that is responsible for killing millions people every year. (C) 2012 Elsevier B.V. All rights reserved.