992 resultados para HONEYBEES APIS-MELLIFERA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Complete genome sequences were determined for two distinct strains of slow bee paralysis virus (SBPV) of honeybees (Apis mellifera). The SBPV genome is approximately 9 5 kb long and contains a single ORF flanked by 5'- and 3'-UTRs and a naturally polyadenylated 3' tail, with a genome organization typical of members of the family Iflaviridae The two strains, labelled `Rothamsted' and 'Harpenden', are 83% identical at the nucleotide level (94% identical at the amino acid level), although this variation is distributed unevenly over the genome. The two strains were found to co-exist at different proportions in two independently propagated SBPV preparations The natural prevalence of SBPV for 847 colonies in 162 apiaries across five European countries was <2%, with positive samples found only in England and Switzerland, in colonies with variable degrees of Varroa infestation
Resumo:
Agrochemicals on crop cultivated areas is a source of contamination for bees and may cause physiological and behavioral disorders and mortality. The LD50 of the pesticides fipronil and imidacloprid was determined and their effect on the learning behavior of Apis mellifera L. honeybee evaluated. LD50 was determined by the ingestion of contaminated food with different concentrations of insecticide concentrations: Fipronil (0, 0.8, 0.4, 0.2, 0.1 and 0.05 µg bee-1) and imidacloprid (0, 0.4, 0.2, 0.1, 0.05 and 0.025 µg bee-1). The method of proboscis extension reflection (PER) and learning through citral odor evaluated their responses to food stimulation. LD50 obtained were 0.28 ± 0.11 and 0.10 ± 0.04 µg bee-1 for fipronil and imidacloprid, respectively. The PER test showed no significant difference (p < 0.05) although agrochemicals affected the learning of bees. Insecticides fipronil and imidacloprid are extremely harmful to foraging Africanized Apis mellifera bees.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Though the replacement of European bees by Africanized honey bees in tropical America has attracted considerable attention, little is known about the temporal changes in morphological and genetic characteristics in these bee populations. We examined the changes in the morphometric and genetic profiles of an Africanized honey bee population collected near where the original African swarms escaped, after 34 years of Africanization. Workers from colonies sampled in 1968 and in 2002 were morphometrically analyzed using relative warps analysis and an Automatic Bee Identification System (ABIS). All the colonies had their mitochondrial DNA identified. The subspecies that mixed to form the Africanized honey bees were used as a comparison for the morphometric analysis. The two morphometric approaches showed great similarity of Africanized bees with the African subspecies, Apis mellifera scutellata, corroborating with other markers. We also found the population of 1968 to have the pattern of wing venation to be more similar to A. m. scutellata than the current population. The mitochondrial DNA of European origin, which was very common in the 1968 population, was not found in the current population, indicating selective pressure replacing the European with the African genome in this tropical region. Both morphometric methodologies were very effective in discriminating the A. mellifera groups; the non-linear analysis of ABIS was the most successful in identifying the bees, with more than 94% correct classifications.
Resumo:
Propolis is a resinous substance collected by honeybees to seal honeycomb, which has been used in folk medicine due to its antimicrobial and antioxidant properties. In the present study, water and methanol were used to extract phenols and flavonoids from propolis collected in thirteen different areas in the Algarve region during the winter and spring. The ABTS•+, DPPH•, and O2•- scavenging capacity, and metal chelating activity were also evaluated in the propolis samples. Methanol was more effective than water in extracting total phenols (2.93-8.76 mg/mL) (0.93-2.81 mg/mL). Flavones and flavonols were also better extracted with methanol (1.28-2.76 mg/mL) than with water (0.031-0.019 mg/mL). The free radical scavenging activity, ABTS (IC50=0.006-0.036 mg/mL), DPPH (IC50=0.007-0.069 mg/mL) and superoxide (IC50=0.001-0.053 mg/mL), of the samples was also higher in methanolic extracts. The capacity for chelating metal ions was higher in aqueous extracts (41.11-82.35%) than in the methanolic ones (4.33-29.68%). Propolis from three locations of Algarve region were richer in phenols and had better capacity for scavenging free ABTS and DPPH radicals than the remaining samples. These places are part of a specific zone of Algarve known as Barrocal.
Resumo:
Os ácaros ectoparasitas Varroa destructor, que parasitam as abelhas tornaram-se um problema global. Embora seja pouco provável que estes ácaros, por si só, provoquem a mortalidade das colmeias, eles desempenham um importante papel como vetor de muitas doenças virais. E estas doenças são identificados como algumas das mais importantes razões para a Desordem do Colapso das Colônias. Os efeitos da infestação do V.destructor são distintas em diferentes partes do mundo. Maiores mortalidades de colônias têm sido relatadas em colônias de abelhas européias (AE) em países da Europa, Ásia e América do Norte. No entanto, este ácaro está presente no Brasil já por muitos anos e não existem relatos de perdas em colônias das abelhas africanizadas (AA). Estudos realizados no México mostraram que alguns comportamentos de resistência ao ácaro Varroa - especialmente o grooming e o comportamento higiênico - são diferentes em cada uma das subespécie. Poderiam então esses mecanismos explicar por que as abelhas africanizadas são menos suscetíveis à Desordem do Colapso das Colônias? A fim de responder a esta pergunta, propomos um modelo matemático baseado em equações diferenciais, com o objetivo de analisar o papel desses mecanismos de resistência na saúde geral da colônia e na capacidade da colônia para enfrentar desafios ambientais.
Resumo:
In Apis mellifera the acid or venom gland is composed of secretory cells that surround a channel that opens into a reservoir devoid of musculature. This gland can at times present apical branching. In this study we recorded the frequency of branched venom glands in workers of Africanized bees (Apis mellifera Linnaeus) from six localities in the Pantanal region of Mato Grosso do Sul, and analyzed the relation among the length of the main duct, the length of the duct from the reservoir to the beginning of branching, the length of the branched segment (when present) and the total length of the gland. We sought to determine the probable genotypes of the bees from each population by using the model proposed by Alves-Junior. The frequency of branched glands varied from 50% to 83% in the worker bees coming from those places, indicating that this characteristic is primitive in these bees. The results of the Analysis of Discriminant Functions indicated significant differences in the morphometrical segments of the venom gland (Wilk's Lambda = 0.065; F-(27,F-30) = 4.507; P < 0.001), and permitted a differentiation of the populations studied. The genotypes inferred for the bees of each locality agree with the results obtained in the Analysis of Discriminant Functions and form three distinct groups, with some overlapping areas among them. In all of the populations considered the phenotype largevenom gland was predominant. It is inferred that bees with this phenotype (venom gland larger than S. 15 mm) have Gm(1) Gm(1) genotype, being therefore homozygotes for the major alleles and also for the modifier genes that codify this morphological trait. The high frequency of worker bees with large venom gland in all the places considered makes viable the development of a selection program in order to obtain bees with longer venom glands, aimed at the commercial production of venom by the beekeepers of the Pantanal region of Mato Grosso do Sul.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Este trabalho tem como objetivos verificar as áreas de cria e alimento e a longevidade de operárias em colmeias de Apis mellifera, em apicultura fixa (mata) e migratória (laranja e eucalipto), sem (T1) e com (T2) tela excluidora de rainha. Foram utilizadas colmeias modelo Langstroth, com sobrecaixa. Na apicultura fixa, estas colmeias foram analisadas durante 476 dias e mapeadas a cada 30 a 45 dias para obtenção das áreas de cria e alimento. Na migratória, as colmeias foram analisadas antes e após a florada. Foi estudada também a longevidade das operárias, nos dois tratamentos. Os dados mostraram que em fluxo baixo de néctar (apicultura fixa, em mata), o uso de tela excluidora apresentou maior eficiência na separação do mel das crias. Entretanto, quando o fluxo de néctar foi alto (floradas de laranja e eucalipto), a tela excluidora não foi eficiente, pois as abelhas rapidamente preencheram os favos disponíveis no ninho inferior, misturando-o com cria. Observou-se também redução na longevidade das operárias das colmeias com tela excluidora, em dois dos três testes realizados. Este trabalho, desenvolvido em três locais diferentes, com plantas apícolas distintas evidenciou também a variabilidade e a grande influência ambiental no desenvolvimento das colônias de Apis mellifera.
Resumo:
O presente experimento foi conduzido em Jaboticabal, SP, e teve como objetivos estudar uma cultura de café (Coffea arabica L., var. Mundo Novo), quanto à biologia floral, a freqüência e comportamento dos insetos na flor, testar o produto Bee-HereR (Hoescht Shering Agrevo do Brasil Ltda) quanto a sua atratividade para as abelhas Apis mellifera e verificar a produção de frutos com e sem a visita dos insetos. Para isso, foram verificados o tempo do desenvolvimento e quantidade de açúcar solúvel do néctar das flores; freqüência das visitações dos insetos, no decorrer do dia, por meio de contagem do número de insetos visitando as flores, a cada 60 minutos, das 8 às 17 horas, 10 minutos em cada horário; tempo (em segundos) e tipo de coleta (néctar e/ou pólen) dos insetos mais freqüentes; perda de botões florais; porcentagem de flores que se transformaram em frutos; tempo de formação e contagem dos grãos de café, observando-se a porcentagem de frutificação em flores visitadas ou não pelos insetos. Também foram realizados testes por pulverização utilizando-se o produto Bee-HereR , diluído em xarope e em água, em diferentes horários. A flor durou, em média, cerca de 3 dias desde sua abertura até o murchamento. A quantidade de açúcares do néctar apresentou diferença significativa entre os horários, sendo maior às 8 horas (em média, 102,18 ± 8,75 mg de carboidratos totais por flor). A abelha A. mellifera foi o inseto mais freqüente nas flores de café, coletando, principalmente, néctar no decorrer do dia. A perda de botões florais causada pelas chuvas foi, em média, 26,50 ± 11,70%. O tempo para a formação do fruto foi 6 meses e o número de frutos decorrentes do tratamento descoberto foi maior (38,79% e 168,38%, em 1993 e 1994, respectivamente) que do tratamento coberto. Apesar da eficiência do produto Bee-HereR ser afetada pelas condições climáticas, ele pode ser usado para atrair as abelhas A. mellifera na cultura.
Enzymatic variability among venoms from different subspecies of Apis mellifera (Hymenoptera: Apidae)
Resumo:
The enzymatic variability was analyzed in venom extracts from bees reared in different colonies of the Africanized, A. m. ligustica and A. m. carnica subspecies. The implications of this variation focused on the biochemistry differentiation and immunogenicity of these venoms. The results showed the existence of a huge variability among the subspecies as well as among the colonies for three out of the six tested components - hyaluronidase, acid phosphatase and proteases - suggesting the utilization of these features as possible biochemical markers. Furthermore, although not statistically significant, it was found that the Africanized bee venom presented slightly higher levels of protein content and esterase activity, when compared to the other subspecies. If the esterase plays a role in the pain intensity caused by the sting, as suggested elsewhere, this might suggest a reason for a bigger algogenicity of this venom in relation to that of European bees. On the other hand, A. m. ligustica bees presented the highest levels of proteolytic and acid phosphatase activities, whose functions are not enlightened in Hymenoptera venoms. The A. m. carnica workers presented the highest hyaluronidase and the lowest acid phosphatase activity levels. The extremely variable results among colonies of the same subspecies and among subspecies, for the tested venom components, justify the absence of correlation between allergic reactions and tests with pooled venom.
Resumo:
The development in the area of creates was studied of 14 nuclei with four mass off cells from the division of nine beehives of africanized Apis mellifera honeybees, distributed in two treatments: TPL - nuclei fed with inverted sugar + 3.5ml of the vitaminic amino acid supplement (Promotor L® ), composition for six nuclei and TAI - nuclei fed with composed inverted sugar for eight nuclei. The nuclei had been fed weekly in individual feeder's type tray, and the evaluations carried through in four periods, totalizing 74 days. The treatments had not presented significant difference, being that, number the TPL presented area of creates inferior to TAI (233.63 versus. 273.02cm 2, respectively). How much to the periods the four was superior (P<0.05) to the first and as second, being that the third did not present significant difference (P<0.05) in relation to the others. The use of the TAI was economically more favorable in relation to the TPL in R$0.21 in relation to the cost for production of 1kg of food.
Resumo:
Differences of venom peptide composition as function of two collection methodologies, electrical stimulation (ES) and reservoir disruption (RD), were analyzed by reverse-phase HPLC in Apis mellifera races - A. m. adansonii, A. m. ligustica and Africanized honeybee. The analyses were performed through determination of the relative number and percentage of each molecular form associated to the peaks eluted by chromatography. Comparison of these profiles revealed qualitative and quantitative differences related to the venom collection methodology as well to the three races analyzed. In contrast to data usually found for venom proteins, the three races presented a major number of peaks or molecular forms when venom was collected by ES. Besides, in general, the relative concentration of each peak was higher for ES in relation to RD. That indicates the presence of molecular precursors in the venom obtained by RD. The presence/absence pattern of the peaks, such as their relative concentrations showed a closer similarity between A. m. adansonii and the Africanized honeybees than that observed between these and A. m. ligustica. The obtained data allowed a discussion about the differences in the relative concentration of each venom component according to the collection methodology, and finally the biological action of the venom in different races. So, these results, apart from being useful to establish a peptide profile for each bee race as a function of the venom collection methodology, pointed out once more that the chromatographic techniques are a great tool for the identification of A. mellifera subspecies.
Resumo:
The aim of this research was to identify the insects visiting flowers of sweet pepper and evaluate the effects of entomophilous pollination as a whole and, more especifically, of honeybees as pollinators of this crop. This study was carried out in the municipality of Taubaté, State of São Paulo, Brazil (21°01'S; 45°29'W; altitude: 570 m) from April to September, 2002. Insects were collected in thirty-six plants during 10 minutes/hour between 6:00 and 17:00h during days of maximum blooming. Twelve plots were subjected to the following treatments: (1) open-pollinated plots, freely visited by insects; (2) caged plots; (3) caged plots containing a hive of honeybees. Twelve species of insects visited the flowers. Exomalopsis spp. (Hymenoptera, Apidae) were the commonest ones (53,9% of visits). Fruits yielded in treatments (1) and (3) were heavier, presented higher diameter, thicker pericarp and more seeds per fruit than fruits in treatment (2). Results showed that fruits from insect pollinated plots presented better quality. Honeybeesas as pollinators were efficient as the other insects. sweet pepper, Capsicum annuum L., Solanaceae, pollination, Apis mellifera, honeybee.