176 resultados para HOLOGRAM QSAR
Resumo:
This paper describes 2D-QSAR and 3D-QSAR studies against Candida albicans and Cryptococcus neofarmans for a set of 20 bisbenzamidines. In the studies of 2D-QSAR with C. albicans it was obtained a correlation between log MIC-1 and lipolo component-Z (r² = 0.68; Q² = 0.51). In the case of C. neofarmans a correlation between log MIC-1 and lipolo component-Z and of Balaban index (r² = 0.85; Q² = 0.6) was obtained. 3D-QSAR studies using CoMFA showed that the steric fields contributed more to the predicted activities for Candida albicans (94.9%) and Cryptococcus neofarmans (97.9%).
Resumo:
Tuberculosis is an infection caused mainly by Mycobacterium tuberculosis. A first-line antimycobacterial drug is pyrazinamide (PZA), which acts partially as a prodrug activated by a pyrazinamidase releasing the active agent, pyrazinoic acid (POA). As pyrazinoic acid presents some difficulty to cross the mycobacterial cell wall, and also the pyrazinamide-resistant strains do not express the pyrazinamidase, a set of pyrazinoic acid esters have been evaluated as antimycobacterial agents. In this work, a QSAR approach was applied to a set of forty-three pyrazinoates against M. tuberculosis ATCC 27294, using genetic algorithm function and partial least squares regression (WOLF 5.5 program). The independent variables selected were the Balaban index (I), calculated n-octanol/water partition coefficient (ClogP), van-der-Waals surface area, dipole moment, and stretching-energy contribution. The final QSAR model (N = 32, r(2) = 0.68, q(2) = 0.59, LOF = 0.25, and LSE = 0.19) was fully validated employing leave-N-out cross-validation and y-scrambling techniques. The test set (N = 11) presented an external prediction power of 73%. In conclusion, the QSAR model generated can be used as a valuable tool to optimize the activity of future pyrazinoic acid esters in the designing of new antituberculosis agents.
Resumo:
Histamine is an important biogenic amine, which acts with a group of four G-protein coupled receptors (GPCRs), namely H(1) to H(4) (H(1)R - H(4)R) receptors. The actions of histamine at H(4)R are related to immunological and inflammatory processes, particularly in pathophysiology of asthma, and H(4)R ligands having antagonistic properties could be helpful as antiinflammatory agents. In this work, molecular modeling and QSAR studies of a set of 30 compounds, indole and benzimidazole derivatives, as H(4)R antagonists were performed. The QSAR models were built and optimized using a genetic algorithm function and partial least squares regression (WOLF 5.5 program). The best QSAR model constructed with training set (N = 25) presented the following statistical measures: r (2) = 0.76, q (2) = 0.62, LOF = 0.15, and LSE = 0.07, and was validated using the LNO and y-randomization techniques. Four of five compounds of test set were well predicted by the selected QSAR model, which presented an external prediction power of 80%. These findings can be quite useful to aid the designing of new anti-H(4) compounds with improved biological response.
Resumo:
In this study, twenty hydroxylated and acetoxylated 3-phenylcoumarin derivatives were evaluated as inhibitors of immune complex-stimulated neutrophil oxidative metabolism and possible modulators of the inflammatory tissue damage found in type III hypersensitivity reactions. By using lucigenin- and luminol-enhanced chemiluminescence assays (CL-luc and CL-lum, respectively), we found that the 6,7-dihydroxylated and 6,7-diacetoxylated 3-phenylcoumarin derivatives were the most effective inhibitors. Different structural features of the other compounds determined CL-luc and/or CL-lum inhibition. The 2D-QSAR analysis suggested the importance of hydrophobic contributions to explain these effects. In addition, a statistically significant 3D-QSAR model built applying GRIND descriptors allowed us to propose a virtual receptor site considering pharmacophoric regions and mutual distances. Furthermore, the 3-phenylcoumarins studied were not toxic to neutrophils under the assessed conditions. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Chagas disease (American trypanosomiasis) is one of the most important parasitic diseases with serious social and economic impacts mainly on Latin America. This work reports the synthesis, in vitro trypanocidal evaluation, cytotoxicity assays, and molecular modeling and SAR/QSAR studies of a new series of N-phenylpyrazole benzylidene-carbohydrazides. The results pointed 6k (X = H, Y = p-NO(2), pIC(50) = 4.55 M) and 6l (X = F, Y = p-CN, pIC(50) = 4.27 M) as the most potent derivatives compared to crystal violet (pIC(50) = 3.77 M). The halogen-benzylidene-carbohydrazide presented the lowest potency whereas 6l showed the most promising pro. le with low toxicity (0% of cell death). The best equation from the 4D-QSAR analysis (Model 1) was able to explain 85% of the activity variability. The QSAR graphical representation revealed that bulky X-substituents decreased the potency whereas hydrophobic and hydrogen bond acceptor Y-substituents increased it. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Peptides that induce and recall T-cell responses are called T-cell epitopes. T-cell epitopes may be useful in a subunit vaccine against malaria. Computer models that simulate peptide binding to MHC are useful for selecting candidate T-cell epitopes since they minimize the number of experiments required for their identification. We applied a combination of computational and immunological strategies to select candidate T-cell epitopes. A total of 86 experimental binding assays were performed in three rounds of identification of HLA-All binding peptides from the six preerythrocytic malaria antigens. Thirty-six peptides were experimentally confirmed as binders. We show that the cyclical refinement of the ANN models results in a significant improvement of the efficiency of identifying potential T-cell epitopes. (C) 2001 by Elsevier Science Inc.
Resumo:
Tuberculosis (TB) is a worldwide infectious disease that has shown over time extremely high mortality levels. The urgent need to develop new antitubercular drugs is due to the increasing rate of appearance of multi-drug resistant strains to the commonly used drugs, and the longer durations of therapy and recovery, particularly in immuno-compromised patients. The major goal of the present study is the exploration of data from different families of compounds through the use of a variety of machine learning techniques so that robust QSAR-based models can be developed to further guide in the quest for new potent anti-TB compounds. Eight QSAR models were built using various types of descriptors (from ADRIANA.Code and Dragon software) with two publicly available structurally diverse data sets, including recent data deposited in PubChem. QSAR methodologies used Random Forests and Associative Neural Networks. Predictions for the external evaluation sets obtained accuracies in the range of 0.76-0.88 (for active/inactive classifications) and Q(2)=0.66-0.89 for regressions. Models developed in this study can be used to estimate the anti-TB activity of drug candidates at early stages of drug development (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
En aquest treball es presenta un exemple d'aplicació de la semblança molecular quàntica en l'àmbit de la determinació de relacions entre l'estructura i les propietats o activitats biològiques de molècules. La família estudiada està formada per un conjunt de divuit quinolones de les quals es coneixen dues propietats relacionades amb l'activitat biològica: la concentració mínima inhibitòria de la reproducció en E. Coli i I'escissió de l'ADN per la girasa, també en E. Coli. L'estudi s'ha realitzat emprant dues metodologies diferents, fonamentades ambdues en el desenvolupament de la semblança molecular quàntica. Aquestes dues metodologies es basen, respectivament, en el càlcul i l'aplicació dels índexs de semblança i dels índexs topològics de semblança
Resumo:
QSAR studies based on flow microcalorimetric bioassay data for interaction of homologous series of m-alkoxyphenols and p-hydroxybenzoates with E. coli cells were carried out applying factorial design. Results for both series showed a linear relationship between log(dose)max and log Po/w. Analysis of these data allows the identification of contributions toward the derived bioactivity from the parent structures (the molecule minus n-CH2 groups present in the side-chain) and the lipophilic groups, CH2. These results are discussed with respect to drug quantitative structure-relationship.
Resumo:
The comparative QSAR is a tool for validating any statistical model that seems to be reasonable in describing an interaction between a bioactive new chemical entity, BIONCE, and the biological system. In order to deeper the understanding of the relationships and the meaning of parameters within the model it is necessary some kind of lateral validation. This validation can be accomplished by chemical procedures using physicochemical organic reactions and by means of biological systems. In this paper we review some of such comparisons and also present a lateral validation between the same set of antimicrobial hydrazides acting against Saccharomyces cerevisiae yeast and Escherichia coli bacterium cells. QSARs are presented to shed light in this important way of stating that the QSAR model is not the endpoint, but the beginning.
Resumo:
The process of building mathematical models in quantitative structure-activity relationship (QSAR) studies is generally limited by the size of the dataset used to select variables from. For huge datasets, the task of selecting a given number of variables that produces the best linear model can be enormous, if not unfeasible. In this case, some methods can be used to separate good parameter combinations from the bad ones. In this paper three methodologies are analyzed: systematic search, genetic algorithm and chemometric methods. These methods have been exposed and discussed through practical examples.
Resumo:
A new model for the H2 antagonists binding site is postulated based on adsorption coefficient values of sixteen antagonists, in the affinities constants of the primary and secondary binding sites, and in the chemical characterization of these sites by 3D-QSAR. All study compounds are in the extended conformation and deprotonated form. The lateral validation of the QSARs, CoMFA analysis, affinity constants and chemical similarity data suggest that the antagonists block the proton pump in the H2 receptor interacting with two tyrosines - one in the helix 5, and other in the helix 6.
Resumo:
The Hansch Analysis, also known by QSAR-2D, is an extremely effective tool in the identification and/or improvement of the pharmacological or toxicological profile of xenobiotics. This article presents the theme didactically and with enough detail to clarify the conceptual basis of Hansch Analysis. Besides, it shows the application of the technique in measuring the influence of physicochemical properties on the biological activity of compounds with pharmacological interest.
Resumo:
Alzheimer's disease (AD) is considered the main cause of cognitive decline in adults. The available therapies for AD treatment seek to maintain the activity of cholinergic system through the inhibition of the enzyme acetylcholinesterase. However, butyrylcholinesterase (BuChE) can be considered an alternative target for AD treatment. Aiming at developing new BuChE inhibitors, robust QSAR 3D models with high predictive power were developed. The best model presents a good fit (r²=0.82, q²=0.76, with two PCs) and high predictive power (r²predict=0.88). Analysis of regression vector shows that steric properties have considerable importance to the inhibition of the BuChE.
Resumo:
This paper describes 2D-QSAR and 3D-QSAR studies against Candida albicans and Cryptococcus neofarmans for a set of 20 bisbenzamidines. In the studies of 2D-QSAR with C. albicans it was obtained a correlation between log MIC-1 and lipolo component-Z (r² = 0.68; Q² = 0.51). In the case of C. neofarmans a correlation between log MIC-1 and lipolo component-Z and of Balaban index (r² = 0.85; Q² = 0.6) was obtained. 3D-QSAR studies using CoMFA showed that the steric fields contributed more to the predicted activities for Candida albicans (94.9%) and Cryptococcus neofarmans (97.9%).