962 resultados para HEPATIC MITOCHONDRIA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Idiosyncratic hepatotoxicity is a well-known complication associated with aromatic antiepileptic drugs (AAED), and it has been suggested to occur due to the accumulation of toxic arene oxide metabolites. Although there is clear evidence of the participation of an immune process, a direct toxic effect involving mitochondria dysfunction is also possible. The effects of AAED on mitochondrial function have not been studied yet. Therefore, we investigated, in vitro, the cytotoxic mechanism of carbamazepine (CB), phenytoin (PT) and phenobarbital (PB), unaltered and bioactivated, in the hepatic mitochondrial function. The murine hepatic microsomal system was used to produce the anticonvulsant metabolites. All the bioactivated drugs (CB-B, PB-B, PT-B) affected mitochondrial function causing decrease in state three respiration, RCR, ATP synthesis and membrane potential, increase in state four respiration as well as impairment of Ca(2+) uptake/release and inhibition of calcium-induced swelling. As an unaltered drug, only PB, was able to affect mitochondrial respiration (except state four respiration) ATP synthesis and membrane potential; however, Ca(2+) uptake/release as well as swelling induction were not affected. The potential to induce mitochondrial dysfunction was PT-B > PB-B > CB-B > PB. Results suggest the involvement of mitochondrial toxicity in the pathogenesis of AAED-induced hepatotoxicity. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High fat diets and accompanying hepatic steatosis are highly prevalent conditions. Previous work has shown that steatosis is accompanied by enhanced generation of reactive oxygen species (ROS), which may mediate further liver damage. Here we investigated mechanisms leading to enhanced ROS generation following high fat diets (HFD). We found that mitochondria from HFD livers present no differences in maximal respiratory rates and coupling, but generate more ROS specifically when fatty acids are used as substrates. Indeed, many acyl-CoA dehydrogenase isoforms were found to be more highly expressed in HFD livers, although only the very long chain acyl-CoA dehydrogenase (VLCAD) was more functionally active. Studies conducted with permeabilized mitochondria and different chain length acyl-CoA derivatives suggest that VLCAD is also a source of ROS production in mitochondria of HFD animals. This production is stimulated by the lack of NAD+. Overall, our studies uncover VLCAD as a novel, diet-sensitive, source of mitochondrial ROS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: INTRODUCTION: Low blood pressure, inadequate tissue oxygen delivery and mitochondrial dysfunction have all been implicated in the development of sepsis-induced organ failure. This study evaluated the effect on liver mitochondrial function of using norepinephrine to increase blood pressure in experimental sepsis. METHODS: Thirteen anaesthetized pigs received endotoxin (Escherichia coli lipopolysaccharide B0111:B4; 0.4 mug/kg per hour) and were subsequently randomly assigned to norepinephrine treatment or placebo for 10 hours. Norepinephrine dose was adjusted at 2-hour intervals to achieve 15 mmHg increases in mean arterial blood pressure up to 95 mmHg. Systemic (thermodilution) and hepatosplanchnic (ultrasound Doppler) blood flow were measured at each step. At the end of the experiment, hepatic mitochondrial oxygen consumption (high-resolution respirometry) and citrate synthase activity (spectrophotometry) were assessed. RESULTS: Mean arterial pressure (mmHg) increased only in norepinephrine-treated animals (from 73 [median; range 69 to 81] to 63 [60 to 68] in controls [P = 0.09] and from 83 [69 to 93] to 96 [86 to 108] in norepinephrine-treated animals [P = 0.019]). Cardiac index and systemic oxygen delivery (DO2) increased in both groups, but significantly more in the norepinephrine group (P < 0.03 for both). Cardiac index (ml/min per.kg) increased from 99 (range: 72 to 112) to 117 (110 to 232) in controls (P = 0.002), and from 107 (84 to 132) to 161 (147 to 340) in norepinephrine-treated animals (P = 0.001). DO2 (ml/min per.kg) increased from 13 (range: 11 to 15) to 16 (15 to 24) in controls (P = 0.028), and from 16 (12 to 19) to 29 (25 to 52) in norepinephrine-treated animals (P = 0.018). Systemic oxygen consumption (systemic VO2) increased in both groups (P < 0.05), whereas hepatosplanchnic flows, DO2 and VO2 remained stable. The hepatic lactate extraction ratio decreased in both groups (P = 0.05). Liver mitochondria complex I-dependent and II-dependent respiratory control ratios were increased in the norepinephrine group (complex I: 3.5 [range: 2.1 to 5.7] in controls versus 5.8 [4.8 to 6.4] in norepinephrine-treated animals [P = 0.015]; complex II: 3.1 [2.3 to 3.8] in controls versus 3.7 [3.3 to 4.6] in norepinephrine-treated animals [P = 0.09]). No differences were observed in citrate synthase activity. CONCLUSION: Norepinephrine treatment during endotoxaemia does not increase hepatosplanchnic flow, oxygen delivery or consumption, and does not improve the hepatic lactate extraction ratio. However, norepinephrine increases the liver mitochondria complex I-dependent and II-dependent respiratory control ratios. This effect was probably mediated by a direct effect of norepinephrine on liver cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catecholamines are frequently used in sepsis, but their interaction with mitochondrial function is controversial. We incubated isolated native and endotoxin-exposed swine liver mitochondria with either dopamine, dobutamine, noradrenaline or placebo for 1 h. Mitochondrial State 3 and 4 respiration and their ratio (RCR) were determined for respiratory chain complexes I, II and IV. All catecholamines impaired glutamate-dependent RCR (p = 0.046), predominantly in native mitochondria. Endotoxin incubation alone induced a decrease in glutamate-dependent RCR compared to control samples (p = 0.002). We conclude that catecholamines and endotoxin impair the efficiency of mitochondrial complex I respiration in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic inflammation is known to affect drug disposition in the liver. This study sought to relate and quantitate changes in hepatic pharmacokinetics of propranolol with changes in hepatic architecture and physiology in adjuvant-treated rats. Transmission electron microscopy was used to assess morphological changes in mitochondria and lysosomes of adjuvant-treated rat livers. The disposition of propranolol was assessed in the perfused rat liver using the multiple indicator dilution technique. Hepatic extraction and mean transit time were determined from outflow-concentration profiles using a nonparametric method. Kinetic parameters were derived from a two-phase physiologically based organ pharmacokinetic model. Possible relationships were then explored between the changes in hepatic drug disposition and cytochrome P-450 activity and iron concentration. Adjuvant treatment induced the appearance of mitochondrial inclusions/tubularization and irregularly shaped lysosomes in rat livers. Livers from adjuvant-treated rats had (relative to normal) significantly higher alpha(1)-acid glycoprotein (orosomucoid) and iron tissue concentrations but lower cytochrome P-450 content. The hepatic extraction, metabolism, and ion trapping of propranolol were significantly impaired in adjuvant-treated rats and could be correlated with altered iron store and cytochrome P-450 activity. It is concluded that adjuvant-induced systemic inflammation alters hepatocellular morphology and biochemistry and consequently influences hepatic disposition of propranolol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous results provided evidence that Cratylia mollis seed lectin (Cramoll 1,4) promotes Trypanosoma cruzi epimastigotes death by necrosis via a mechanism involving plasma membrane permeabilization to Ca(2+) and mitochondrial dysfunction due to matrix Ca(2+) overload. In order to investigate the mechanism of Ca(2+) -induced mitochondrial impairment, experiments were performed analyzing the effects of this lectin on T. cruzi mitochondrial fraction and in isolated rat liver mitochondria (RLM), as a control. Confocal microscopy of T. cruzi whole cell revealed that Cramoll 1,4 binding to the plasma membrane glycoconjugates is followed by its internalization and binding to the mitochondrion. Electrical membrane potential (∆Ψm ) of T. cruzi mitochondrial fraction suspended in a reaction medium containing 10 μM Ca(2+) was significantly decreased by 50 μg/ml Cramoll 1,4 via a mechanism insensitive to cyclosporine A (CsA, membrane permeability transition (MPT) inhibitor), but sensitive to catalase or 125 mM glucose. In RLM suspended in a medium containing 10 μM Ca(2+) this lectin, at 50 μg/ml, induced increase in the rate of hydrogen peroxide release, mitochondrial swelling, and ∆Ψm disruption. All these mitochondrial alterations were sensitive to CsA, catalase, and EGTA. These results indicate that Cramoll 1, 4 leads to inner mitochondrial membrane permeabilization through Ca(2+) dependent mechanisms in both mitochondria. The sensitivity to CsA in RLM characterizes this lectin as a MPT inducer and the lack of CsA effect identifies a CsA-insensitive MPT in T. cruzi mitochondria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paracoccidioidomycosis is a systemic mycosis that is endemic to certain countries in Latin America. This study aimed to describe the histological features of liver involvement in patients with paracoccidioidomycosis aged <16 years of age who were treated between 1980 and 2010, with a diagnosis that was confirmed by detection of the fungus by pathological examination. Liver tissue was obtained from one necropsy and 12 biopsies. Throughout 2007, biopsies were taken from patients with persistent jaundice or portal hypertension, after which biopsies became indicated due to elevated aminotransferase and low albumin levels. Using haematoxylin and eosin (H&E), Masson's trichrome and immunohistochemical (CK7 and CK19) staining, we noted degenerative alterations in bile duct cells and inflammatory injury to the bile ducts in 10 biopsies. Using immunohistochemistry for CK7 and CK19, we observed ductal proliferation in all 12 samples. Bile duct injuries by inflammatory cells might explain the predominant increase in canalicular enzymes; immunohistochemistry is more sensitive in demonstrating ductular reactions and might show changes that are not apparent on H&E staining.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To describe the prevalence of hepatic steatosis and to assess the performance of biochemical, anthropometric and body composition indicators for hepatic steatosis in obese teenagers. Cross-sectional study including 79 adolecents aged from ten to 18 years old. Hepatic steatosis was diagnosed by abdominal ultrasound in case of moderate or intense hepatorenal contrast and/or a difference in the histogram ≥7 on the right kidney cortex. The insulin resistance was determined by the Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) index for values >3.16. Anthropometric and body composition indicators consisted of body mass index, body fat percentage, abdominal circumference and subcutaneous fat. Fasting glycemia and insulin, lipid profile and hepatic enzymes, such as aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase and alkaline phosphatase, were also evaluated. In order to assess the performance of these indicators in the diagnosis of hepatic steatosis in teenagers, a ROC curve analysis was applied. Hepatic steatosis was found in 20% of the patients and insulin resistance, in 29%. Gamma-glutamyltransferase and HOMA-IR were good indicators for predicting hepatic steatosis, with a cutoff of 1.06 times above the reference value for gamma-glutamyltransferase and 3.28 times for the HOMA-IR. The anthropometric indicators, the body fat percentage, the lipid profile, the glycemia and the aspartate aminotransferase did not present significant associations. Patients with high gamma-glutamyltransferase level and/or HOMA-IR should be submitted to abdominal ultrasound examination due to the increased chance of having hepatic steatosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to characterize the effects of partial inhibition of respiratory complex I by rotenone on H2O2 production by isolated rat brain mitochondria in different respiratory states. Flow cytometric analysis of membrane potential in isolated mitochondria indicated that rotenone leads to uniform respiratory inhibition when added to a suspension of mitochondria. When mitochondria were incubated in the presence of a low concentration of rotenone (10 nm) and NADH-linked substrates, oxygen consumption was reduced from 45.9 ± 1.0 to 26.4 ± 2.6 nmol O2 mg(-1) min(-1) and from 7.8 ± 0.3 to 6.3 ± 0.3 nmol O2 mg(-1) min(-1) in respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration), respectively. Under these conditions, mitochondrial H2O2 production was stimulated from 12.2 ± 1.1 to 21.0 ± 1.2 pmol H2O2 mg(-1) min(-1) and 56.5 ± 4.7 to 95.0 ± 11.1 pmol H2O2 mg(-1) min(-1) in respiratory states 3 and 4, respectively. Similar results were observed when comparing mitochondrial preparations enriched with synaptic or nonsynaptic mitochondria or when 1-methyl-4-phenylpyridinium ion (MPP(+)) was used as a respiratory complex I inhibitor. Rotenone-stimulated H2O2 production in respiratory states 3 and 4 was associated with a high reduction state of endogenous nicotinamide nucleotides. In succinate-supported mitochondrial respiration, where most of the mitochondrial H2O2 production relies on electron backflow from complex II to complex I, low rotenone concentrations inhibited H2O2 production. Rotenone had no effect on mitochondrial elimination of micromolar concentrations of H2O2. The present results support the conclusion that partial complex I inhibition may result in mitochondrial energy crisis and oxidative stress, the former being predominant under oxidative phosphorylation and the latter under resting respiration conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic and systemic treatment of rodents with rotenone, a classical inhibitor of mitochondrial respiratory complex I, results in neurochemical, behavioral, and neuropathological features of Parkinson's disease. The aim of the present study was to evaluate whether brain mitochondria from old rats (24 months old) would be more susceptible to rotenone-induced inhibition of oxygen consumption and increased generation of H2O2 than mitochondria from young-adult rats (3-4 months old). Isolated brain mitochondria were incubated in the presence of different rotenone concentrations (5, 10, and 100nM), and oxygen consumption and H2O2 production were measured during respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration). Respiratory state 3 and citrate synthase activity were significantly lower in mitochondria from old rats. Mitochondria from young-adult and old rats showed similar sensitivity to rotenone-induced inhibition of oxygen consumption. Similarly, H2O2 production rates by both types of mitochondria were dose-dependently stimulated to the same extent by increasing concentrations of rotenone. We conclude that rotenone exerts similar effects on oxygen consumption and H2O2 production by isolated brain mitochondria from young-adult and old rats. Therefore, aging does not increase the mitochondrial H2O2 generation in response to complex I inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT: Hepatic fibrosis occurs in response to several aggressive agents and is a predisposing factor in cirrhosis. Hepatotrophic factors were shown to stimulate liver growth and to restore the histological architecture of the liver. They also cause an improvement in liver function and accelerate the reversion of fibrosis before it progresses to cirrhosis. OBJECTIVE: To test the effects of hepatic fibrosis solution composed by amino acids, vitamins, glucose, insulin, glucagon and triiodothyronine on hepatic fibrosis in rats. METHODS: Fibrosis was induced in rats by gastric administration of dimethylnitrosamine (10 mg/kg) for 5 weeks. After liver biopsy, the rats received either hepatotrophic factors solution (40 mg/kg/day) or saline solution for 10 days by intraperitoneal injection. Blood samples and liver fragments were collected for hepatic function analysis, standard histopathology evaluation, and morphometric collagen quantification. RESULTS: Rats in the hepatotrophic factors group showed a decrease of the histopathological components of fibrosis and an increase of their hepatic mass (12.2%). There was no development of neoplasic lesions in both groups. Compared with the saline group, the hepatotrophic factors group also had a decrease of blood levels of hepatic-lesion markers (AST, ALT) and a decrease of collagen content in the portal spaces (31.6%) and perisinusoidal spaces (42.3%), as well as around the hepatic terminal vein (57.7%). Thus, hepatotrophic factors administration in the portal blood promoted a regenerative hepatic response, with an overall reduction of the volumetric density of collagen, improved hepatic function, and a general improvement in the histopathological aspects of fibrosis. CONCLUSION: Taken together, these results suggest the potential therapeutic use of this hepatotrophic factors solution to treat chronic liver diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of aluminum silicates for decontaminating animal feed containing aflatoxins has yielded encouraging results in chicken and turkey poults. In contrast, very few studies have tested these substances in aquaculture. In this work, we investigated the efficacy of a trout diet containing 0.5% hydrated sodium aluminosilicate (HSAS) in protecting against contamination with aflatoxin B1. Trout were reared on these diets for one year and the experimental groups were examined monthly for hepatic presumptive preneoplastic and neoplastic lesions. Regardless of the presence of HSAS, all of the fish that received aflatoxin in their diet have shown hepatic lesions indicative of a carcinogenic process, presenting also the development of cancer in some fish. The concentration of HSAS used in this study was ineffective in preventing the onset of hepatic lesions induced by aflatoxin B1 in rainbow trout.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten cattle and 10 buffalo were divided into 2 groups (control [n = 8] and experimental [n = 12]) that received daily administration of copper. Three hepatic biopsies and blood samples were performed on days 0, 45, and 105. The concentration of hepatic copper was determined by spectrophotometric atomic absorption, and the activities of aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) were analyzed. Regression analyses were done to verify the possible existing relationship between enzymatic activity and concentration of hepatic copper. Sensitivity, specificity, accuracy, and positive and negative predictive values were determined. The serum activities of AST and GGT had coefficients of determination that were excellent predictive indicators of hepatic copper accumulation in cattle, while only GGT serum activity was predictive of hepatic copper accumulation in buffalo. Elevated serum GGT activity may be indicative of increased concentrations of hepatic copper even in cattle and buffalo that appear to be clinically healthy. Thus, prophylactic measures can be implemented to prevent the onset of a hemolytic crisis that is characteristic of copper intoxication.