969 resultados para HEIGHTS
Resumo:
Esta dissertação tem como objetivo analisar a situação da vida da mulher durante o século XIX, na Inglaterra e nos Estados Unidos da América, através de duas obras do século XIX: Wuthering Heights (1847) de Emile Brontë e The Awakening (1889) de Kate Chopin. Objetivamos, na presente dissertação, apontar a crítica dos discursos patriarcal e das práticas de poder social que tornaram o contexto social das mulheres representadas nos romances citados, propício para a anulação da expressão erótica e repressão. O objeto da análise restringiu-se às duas personagens principais dos romances, Catherine Earnshaw e Edna Pontellier; personagens cujas subjetividades foram reprimidas através da imposição e desempenho de papéis sociais que não as satisfaziam como mulheres
Resumo:
A waverider buoy was deployed in Phitti Creek (24°33'N; 67°03'E) for wave measurements during April-July 1986. Using Tucker's method wave records were calculated in terms of significant wave height (Hs) and Maximum Wave Height (Hmax). For each parameter weekly mean and standard deviation values were also computed for statistical analysis. For Hs the lowest mean value of 0.8m and for Hmax the lowest mean value of 1.51m were observed in the fourth week of April whereas the highest mean value observed for Hs was 3.02m and for Hmax was 4.94m in the fourth week of June, 1986.
Resumo:
We present the results of an experimental investigation across a broad range of source Froude numbers, 0. 4 ≤ Fr 0 ≤ 45, into the dynamics, morphology and rise heights of Boussinesq turbulent axisymmetric fountains in quiescent uniform environments. Typically, these fountains are thought to rise to an initial height, z i, before settling back and fluctuating about a lesser (quasi-) steady height, z ss. Our measurements show that this is not always the case and the ratio of the fountain's initial rise height to steady rise height, λ = z i/z ss, varies widely, 0. 5 ≈ λ ≈ 2, across the range of Fr 0 investigated. As a result of near-ideal start-up conditions provided by the experimental set-up we were consistently able to form a vortex at the fountain's front. This enabled new insights into two features of the initial rise of turbulent fountains. Firstly, for 1. 0 ≈ Fr 0 ≈ 1. 7 the initial rise height is less than the steady rise height. Secondly, for Fr 0 ≈ 5. 5, the vortex formed at the fountain's front pinches off, separates from the main body and rises high above the fountain; there is thus a third rise height to consider, namely, the maximum vortex rise height, z v. From our observations we propose classifying turbulent axisymmetric fountains into five regimes (as opposed to the current three regimes) and present detailed descriptions of the flow in each. Finally, based on an analysis of the rise height fluctuations and the width of fountains in (quasi-) steady state we provide further insight into the physical cause of height fluctuations. © 2011 Cambridge University Press.
Resumo:
Up to now, in most of the research work done on the effect of hydrogen on a Schottky barrier, the hydrogen was introduced into the semiconductor before metal deposition. This letter reports that hydrogen can be effectively introduced into the Schottky barriers (SBs) of Au/n-GaAs and Ti/n-GaAs by plasma hydrogen treatment (PHT) after metal deposition on [100] oriented n-GaAs substrates. The Schottky barrier height (SBH) of a SB containing hydrogen shows the zero/reverse bias annealing (ZBA/RBA) effect. ZBA makes the SBH decrease and RBA makes it increase. The variations in the SBHs are reversible. In order to obtain obvious ZBA/RBA effects, selection of the temperature for plasma hydrogen treatment is important, and it is indicated that 100-degrees-C for Au/n-GaAs and 150-degrees-C for Ti/n-GaAs are suitable temperatures. It is concluded from the analysis of experimental results that only the hydrogen located at or near the metal-semiconductor interface, rather than the hydrogen in the bulk of either the semiconductor or the metal, is responsible for the ZBA/RBA effect on SBH.