70 resultados para HD9969.U6 U6 1915a


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RNA polymerase (pol) II and III human small nuclear RNA (snRNA) genes have very similar promoters and recruit a number of common factors. In particular, both types of promoters utilize the small nuclear RNA activating protein complex (SNAP(c)) and the TATA box binding protein (TBP) for basal transcription, and are activated by Oct-1. We find that SNAP(c) purified from cell lines expressing tagged SNAP(c) subunits is associated with Yin Yang-1 (YY1), a factor implicated in both activation and repression of transcription. Recombinant YY1 accelerates the binding of SNAP(c) to the proximal sequence element, its target within snRNA promoters. Moreover, it enhances the formation of a complex on the pol III U6 snRNA promoter containing all the factors (SNAP(c), TBP, TFIIB-related factor 2 (Brf2), and B double prime 1 (Bdp1)) that are sufficient to direct in vitro U6 transcription when complemented with purified pol III, as well as that of a subcomplex containing TBP, Brf2, and Bdp1. YY1 is found on both the RNA polymerase II U1 and the RNA polymerase III U6 promoters as determined by chromatin immunoprecipitations. Thus, YY1 represents a new factor that participates in transcription complexes formed on both pol II and III promoters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To characterize the clinical, psychophysical, and electrophysiological phenotypes in a five-generation Swiss family with dominantly inherited retinitis pigmentosa caused by a T494M mutation in the Precursor mRNA-Processing factor 3 (PRPF3) gene, and to relate the phenotype to the underlying genetic mutation. METHODS: Eleven affected patients were ascertained for phenotypic and genotypic characterization. Ophthalmologic evaluations included color vision testing, Goldmann perimetry, and digital fundus photography. Some patients had autofluorescence imaging, Optical Coherence Tomography, and ISCEV-standard full-field electroretinography. All affected patients had genetic testing. RESULTS: The age of onset of night blindness and the severity of the progression of the disease varied between members of the family. Some patients reported early onset of night blindness at age three, with subsequent severe deterioration of visual acuity, which was 0.4 in the best eye after their fifties. The second group of patients had a later onset of night blindness, in the mid-twenties, with a milder disease progression and a visual acuity of 0.8 at age 70. Fundus autofluorescence imaging and electrophysiological and visual field abnormalities also showed some degree of varying phenotypes. The autofluorescence imaging showed a large high-density ring bilaterally. Myopia (range: -0.75 to -8) was found in 10/11 affected subjects. Fundus findings showed areas of atrophy along the arcades. A T494M change was found in exon 11 of the PRPF3 gene. The change segregates with the disease in the family. CONCLUSIONS: A mutation in the PRPF3 gene is rare compared to other genes causing autosomal dominant retinitis pigmentosa (ADRP). Although a T494M change has been reported, the family in our study is the first with variable expressivity. Mutations in the PRPF3 gene can cause a variable ADRP phenotype, unlike in the previously described Danish, English, and Japanese families. Our report, based on one of the largest affected pedigree, provides a better understanding as to the phenotype/genotype description of ADRP caused by a PRPF3 mutation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our view of the RNA polymerase III (Pol III) transcription machinery in mammalian cells arises mostly from studies of the RN5S (5S) gene, the Ad2 VAI gene, and the RNU6 (U6) gene, as paradigms for genes with type 1, 2, and 3 promoters. Recruitment of Pol III onto these genes requires prior binding of well-characterized transcription factors. Technical limitations in dealing with repeated genomic units, typically found at mammalian Pol III genes, have so far hampered genome-wide studies of the Pol III transcription machinery and transcriptome. We have localized, genome-wide, Pol III and some of its transcription factors. Our results reveal broad usage of the known Pol III transcription machinery and define a minimal Pol III transcriptome in dividing IMR90hTert fibroblasts. This transcriptome consists of some 500 actively transcribed genes including a few dozen candidate novel genes, of which we confirmed nine as Pol III transcription units by additional methods. It does not contain any of the microRNA genes previously described as transcribed by Pol III, but reveals two other microRNA genes, MIR886 (hsa-mir-886) and MIR1975 (RNY5, hY5, hsa-mir-1975), which are genuine Pol III transcription units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TFIIB-related factor 2 (Brf2) is a member of the family of TFIIB-like core transcription factors. Brf2 recruits RNA polymerase (Pol) III to type III gene-external promoters, including the U6 spliceosomal RNA and selenocysteine tRNA genes. Found only in vertebrates, Brf2 has been linked to tumorigenesis but the underlying mechanisms remain elusive. We have solved crystal structures of a human Brf2-TBP complex bound to natural promoters, obtaining a detailed view of the molecular interactions occurring at Brf2-dependent Pol III promoters and highlighting the general structural and functional conservation of human Pol II and Pol III pre-initiation complexes. Surprisingly, our structural and functional studies unravel a Brf2 redox-sensing module capable of specifically regulating Pol III transcriptional output in living cells. Furthermore, we establish Brf2 as a central redox-sensing transcription factor involved in the oxidative stress pathway and provide a mechanistic model for Brf2 genetic activation in lung and breast cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maternal and paternal genetic profile of Guineans is markedly sub-Saharan West African, with the majority of lineages belonging to L0-L3 mtDNA sub-clusters and E3a-M2 and E1-M33 Y chromosome haplogroups. Despite the sociocultural differences among Guinea-Bissau ethnic groups,marked by the supposedly strict admixture barriers, their genetic pool remains largely common. Their extant variation coalesces at distinct timeframes, from the initial occupation of the area to later inputs of people. Signs of recent expansion in mtDNA haplogroups L2a-L2c and NRY E3a-M2 suggest population growth in the equatorial western fringe, possibly supported by an early local agricultural centre, and to which the Mandenka and the Balanta people may relate. Non-West African signatures are traceable in less frequent extant haplogroups, fitting well with the linguistic and historical evidence regarding particular ethnic groups: the Papel and Felupe-Djola people retain traces of their putative East African relatives; U6 and M1b among Guinea-Bissau Bak-speakers indicate partial diffusion to Sahel of North African lineages; U5b1b lineages in Fulbe and Papel represent a link to North African Berbers, emphasizing the great importance of post-glacial expansions; exact matches of R1b-P25 and E3b1-M78 with Europeans likely trace back to the times of the slave trade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major questions concerning Giardia is the understanding of pathophysiological processes associated with small intestine abnormalities. There are evidences that Giardia trophozoites contain and/or release proteolytic enzymes that may be implicated in the host intestinal epithelium. The present investigation was undertaken to examine the protease activity in excretory/secretory (E/S) products of Giardia duodenalis trophozoites of an axenic Brazilian strain (BTU-11) and the reference strain Portland 1 (P1). E/S products from trophozoites of each strain in conditioned medium were tested with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for the protein profiles, and the protease activity was analyzed using substrate-impregnated SDS-PAGE (gelatin and collagen) and hemoglobin assay. The proteases characterization was based on inhibition assays including synthetic inhibitors. Electrophoresis analysis of E/S products revealed a banding pattern composed by few bands (4 to 6 bands) in the migration region of 123 to 28 kDa. Proteolytic products were detected in the conditioned medium by trophozoites of both assayed strains. In the gels containing copolymerized gelatin and collagen, E/S products promoted substrate degradation and the most evident proteolysis zones were distributed in the migration regions of 77 to 18 kDa and 145 to 18 kDa, respectively, in the patterns of gelatinolytic and collagenolytic activities. Degradation of hemoglobin was also observed, and the pattern of hydrolysis was similar in both E/S products assayed. Inhibitor assays showed that the main proteolytic activity in both E/S products is due to cysteine proteases, although the presence of serine proteases was also indicated. Degradation of substrates including collagen and hemoglobin could lead us to speculate different functions of Giardia excreted/secreted proteases in vivo, but to confirm this possibility and to elucidate its implication on host-parasite interactions, further experiments applying protocols for the purification of proteases are necessary. Even so, our observations are relevant and hold the perspective for the understanding about protease activity in Giardia trophozoites of axenic strain isolated in an endemic area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Em eucariotos os íntrons de mRNAs codificantes de proteína são retirados e os éxons são mantidos junto ao transcrito primário pela maquinaria do spliceossomo. Este consiste em um grande complexo RNA-proteína que contém mais de 200 proteínas e cinco tipos de RNAs não codificantes, metabolicamente estáveis, conhecidos como snRNAs U, que incluem U1, U2, U4, U5 e U6. Os genes snRNA U estão presentes em múltiplas cópias dispersas no genoma de diversos eucariotos e parecem apresentar comportamento semelhante aqueles dos elementos móveis exibindo pouca conservação sintênica. No presente trabalho pretendia-se estudar a organização genômica e a localização cromossômica do gene snRNA U1 em espécies de peixes do gênero Leporinus, que é um grupo de peixes que se configura como um modelo interessante para estudo de DNAs repetitivos e evolução genômica em peixes. Porém, após diversas tentativas não foi possível amplificar este gene e então optou-se por estudar o gene snRNA U2. O DNA genômico de diferentes espécies de Leporinus e de Schizodon (grupo próximo evolutivamente) foi amplificado utilizando primers específicos para o gene, por meio da técnica de PCR e os produtos obtidos enviados para o sequenciamento. O tamanho encontrado para essa sequência correspondeu a aproximadamente 200 pb, valor esse já encontrado para outras espécies. As sequências foram analisadas e resultados não concisos das sequencias obtidas não permitiram análises subsequentes. A localização cromossômica do gene foi realizada por meio da técnica de hibridação in situ e as marcações foram evidenciadas em um par cromossômico submetacêntrico de tamanho médio em todas as espécies. A localização destas sequências não mostrou relação com cromossomos sexuais, presentes em algumas das espécies analisadas, mas demonstrou forte evidência de conservação do gene entre as diferentes espécies estudadas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Splicing of primary transcripts is an essential process for the control of gene expression. Specific conserved sequences in premature transcripts are important to recruit the spliceosome machinery. The Saccharomyces cerevisiae catalytic spliceosome is composed of about 60 proteins and 5 snRNAs (U1, U2, U4/U6 and U5). Among these proteins, there are core components and regulatory factors, which might stabilize or facilitate splicing of specific substrates. Assembly of a catalytic complex depends on the dynamics of interactions between these proteins and RNAs. Cwc24p is an essential S. cerevisiae protein, originally identified as a component of the NTC complex, and later shown to affect splicing in vivo. In this work, we show that Cwc24p also affects splicing in vitro. We show that Cwc24p is important for the U2 snRNP binding to primary transcripts, co-migrates with spliceosomes, and that it interacts with Brr2p. Additionally, we show that Cwc24p is important for the stable binding of Prp19p to the spliceosome. We propose a model in which Cwc24p is required for stabilizing the U2 association with primary transcripts, and therefore, especially important for splicing of RNAs containing non- consensus branchpoint sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uridine-rich small nuclear (U snRNAs), with the exception of the U6 snRNA, are RNA polymerase II (RNAPII) transcripts. The mechanism of 3’ cleavage of snRNAs has been unknown until recently. This area was greatly advanced when 12 of the Integrator complex subunits (IntS) were purified in 2005 through their interaction with the C-terminal domain (CTD) of the large subunit (RpbI) of RNAPII. Subsequently, our lab performed a genome-wide RNAi screen that identified two more members of the complex that we have termed IntS13 and IntS14. We have determined that IntS9 and 11 mediate the 3’ cleavage of snRNAs, but the exact function of the other subunits remains unknown. However, through the use of a U7 snRNA-GFP reporter and RNAi knockdown of the Integrator subunits in Drosophila S2 cells, we have shown that all subunits are required for the proper processing of snRNAs, albeit to differing degrees. Because snRNA transcription takes place in the nucleus of the cell, it is expected that all of the Integrator subunits would exhibit nuclear localization, but the knowledge of discrete subnuclear localization (i.e. to Cajal bodies) of any of the subunits could provide important clues to the function of that subunit. In this study, we used a cell biological approach to determine the localization of the 14 Integrator subunits. We hypothesized that the majority of the subunits would be nuclear, however, a few would display distinct localization to the Cajal bodies, as this is where snRNA genes are localized and transcribed. The specific aims and results are: 1. To determine the subcellular localization of the 14 Integrator subunits. To accomplish this, mCherry and GFP tagged clones were generated for each of the 14 Drosophila and human Integrator subunits. Confocal microscopy studies revealed that the majority of the subunits were diffuse in the nucleus, however, IntS3 formed discrete subnuclear foci. Surprisingly, two of the subunits, IntS2 and 7 were observed in cytoplasmic foci. 2. To further characterize Integrator subunits with unique subcellular localizations. Colocalization studies with endogenous IntS3 and Cajal body marker, coilin, showed that these two proteins overlap, and from this we concluded that IntS3 localized to Cajal bodies. Additionally, colocalization studies with mCherry-tagged IntS2 and 7 and the P body marker, Dcp1, revealed that these proteins colocalize as well. IntS7, however, is more stable in cytoplasmic foci than Dcp1. It was also shown through RNAi knockdown of Integrator subunits, that the cytoplasmic localization of IntS2 and 7 is dependent on the expression of IntS1 and 11 in S2 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coilin is the signature protein of the Cajal body (CB), a nuclear suborganelle involved in the biogenesis of small nuclear ribonucleoproteins (snRNPs). Newly imported Sm-class snRNPs are thought to traffic through CBs before proceeding to their final nuclear destinations. Loss of coilin function in mice leads to significant viability and fertility problems. Coilin interacts directly with the spinal muscular atrophy (SMA) protein via dimethylarginine residues in its C-terminal domain. Although coilin hypomethylation results in delocalization of survival of motor neurons (SMN) from CBs, high concentrations of snRNPs remain within these structures. Thus, CBs appear to be involved in snRNP maturation, but factors that tether snRNPs to CBs have not been described. In this report, we demonstrate that the coilin C-terminal domain binds directly to various Sm and Lsm proteins via their Sm motifs. We show that the region of coilin responsible for this binding activity is separable from that which binds to SMN. Interestingly, U2, U4, U5, and U6 snRNPs interact with the coilin C-terminal domain in a glutathione S-transferase (GST)-pulldown assay, whereas U1 and U7 snRNPs do not. Thus, the ability to interact with free Sm (and Lsm) proteins as well as with intact snRNPs, indicates that coilin and CBs may facilitate the modification of newly formed snRNPs, the regeneration of 'mature' snRNPs, or the reclamation of unassembled snRNP components.