26 resultados para Gynoecium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

• Background and Aims: Eriocaulaceae (Poales) is currently divided in two subfamilies: Eriocauloideae, which comprises two genera and Paepalanthoideae, with nine genera. The floral anatomy of Actinocephalus polyanthus, Leiothrix fluitans, Paepalanthus chlorocephalus, P. flaccidus and Rondonanthus roraimae was studied here. The flowers of these species of Paepalanthoideae are unisexual, and form capitulum-type inflorescences. Staminate and pistillate flowers are randomly distributed in the capitulum and develop centripetally. This work aims to establish a floral nomenclature for the Eriocaulaceae to provide more information about the taxonomy and phylogeny of the family. • Methods: Light microscopy, scanning electron microscopy and chemical tests were used to investigate the floral structures. • Key Results: Staminate and pistillate flowers are trimerous (except in P. flaccidus, which presents dimerous flowers), and the perianth of all species is differentiated into sepals and petals. Staminate flowers present an androecium with scale-like staminodes (not in R. roraimae) and fertile stamens, and nectariferous pistillodes. Pistillate flowers present scale-like staminodes (except for R. roraimae, which presents elongated and vascularized staminodes), and a gynoecium with a hollow style, ramified in stigmatic and nectariferous portions. • Conclusions: The scale-like staminodes present in the species of Paepalanthoideae indicate a probable reduction of the outer whorl of stamens present in species of Eriocauloideae. Among the Paepalanthoideae genera, Rondonanthus, which is probably basal, shows vascularized staminodes in their pistillate flowers. The occurrence of nectariferous pistillodes in staminate flowers and that of nectariferous portions of the style in pistillate flowers of Paepalanthoideae are emphasized as nectariferous structures in Eriocaulaceae. © The Author 2006. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New comparative data are presented on the reproductive morphology and anatomy of two genera closely related to grasses, Flagellaria and Joinvillea, in which the flowers are superficially similar, especially in stamen morphology. This investigation demonstrates some anatomical differences between the two genera. For example, both genera depart from the 'typical' condition of tepal vasculature (three-traced outer tepals and one-traced inner tepals): in Flagellaria, each tepal receives a single vascular bundle and, in Joinvillea, each tepal is supplied by three vascular bundles. Joinvillea possesses supernumerary carpel bundles, as also found in the related family Ecdeiocoleaceae, but not in Flagellaria or grasses. In the anther, the tapetum degenerates early in Flagellaria, and is relatively persistent in Joinvillea, in which the pollen grains remain closely associated with the tapetum inside the anther locule, indicating a correlation between peripheral pollen (a feature that is common in grasses) and a persistent tapetum. This study highlights the presence of a pollen-tube transmitting tissue (PTTT) or solid style in the gynoecium of Flagellaria, as also in many Poaceae, but not in Joinvillea or Ecdeiocoleaceae. We speculate that the presence of a PTTT could represent one of the factors that facilitated the subsequent evolution of the intimately connected gynoecia that characterize grasses. © 2012 The Linnean Society of London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se realizó el análisis morfo-anatómico de Schinopsis balansae Engl. con microscopía óptica y electrónica de barrido a fin de obtener datos de las flores de esta especie, definida como polígamo-dioica. Los resultados muestran que las flores estructuralmente perfectas son funcionalmente pistiladas, si bien presentan cinco estaminodios, los mismos carecen de tejido esporógeno; mientras que en las flores estaminadas la estructura denominada pistilo vestigial no es más que la excrecencia del ápice del receptáculo, cubierta por tejido nectarífero. De este modo, lo correcto es describir S. balansae como especie dioica. El estudio de la vascularización de las flores estaminadas muestra que el proceso de reducción es completo, ya que ni siquiera persisten los haces vasculares del pistilo. El gineceo de las flores pistiladas es pseudomonómero, con un carpelo funcional, un estilo/estigma dorsal y un óvulo; además posee dos carpelos vestigiales representados por sendos estilo/estigma laterales. Ambos tipos de flores presentan un disco nectarífero intraestaminal, con nectarostomatas para la salida del néctar. El análisis de la estructura anatómica de S. balansae brinda datos que concuerdan con los encontrados en otros géneros estudiados de la subfamila Anacardioideae de la familia Anacardiaceae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To characterise the physiology of development and senescence for Grevillea 'Sylvia'. oral organs, respiration, ethylene production and ACC concentrations in harvested flowers and flower parts were measured. The respiration rate of harvested inflorescences decreased over time during senescence. In contrast, both ethylene production and ACC concentration increased. Individual flowers, either detached from cut inflorescences held in vases at 20degreesC or detached from in planta inflorescences at various stages of development, had similar patterns of change in ACC concentration and rates of respiration and ethylene production as whole inflorescences. The correlation between ACC concentration and ethylene production by individual flowers detached from cut inflorescences held in vases was poor (r(2)=0.03). The isolated complete gynoecium (inclusive of the pedicel) produced increasing amounts of ethylene during development. Further sub-division of flower parts and measurement of their ethylene production at various stages of development revealed that the distal part of the gynoecium (inclusive of the stigma) had the highest rate of ethylene production. In turn, anthers had higher rates of ethylene production and also higher ACC concentrations than the proximal part of the gynoecium (inclusive of the ovary). Rates of ethylene production and ACC concentrations for tepal abscission zone tissue and adjacent central tepal zone tissue were similar. ACC concentration in pollen was similar to that in senescing perianth tissue. Overall, respiration, ethylene and ACC content measurements suggest that senescence of G. 'Sylvia' is non-climacteric in character. Nonetheless, the phytohormone ethylene is produced and evidently mediates normal flower development and non-climacteric senescence processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fruit is one of the most complex and important structures produced by flowering plants, and understanding the development and maturation process of fruits in different angiosperm species with diverse fruit structures is of immense interest. In the work presented here, molecular genetics and genomic analysis are used to explore the processes that form the fruit in two species: The model organism Arabidopsis and the diploid strawberry Fragaria vesca. One important basic question concerns the molecular genetic basis of fruit patterning. A long-standing model of Arabidopsis fruit (the gynoecium) patterning holds that auxin produced at the apex diffuses downward, forming a gradient that provides apical-basal positional information to specify different tissue types along the gynoecium’s length. The proposed gradient, however, has never been observed and the model appears inconsistent with a number of observations. I present a new, alternative model, wherein auxin acts to establish the adaxial-abaxial domains of the carpel primordia, which then ensures proper development of the final gynoecium. A second project utilizes genomics to identify genes that regulate fruit color by analyzing the genome sequences of Fragaria vesca, a species of wild strawberry. Shared and distinct SNPs among three F. vesca accessions were identified, providing a foundation for locating candidate mutations underlying phenotypic variations among different F. vesca accessions. Through systematic analysis of relevant SNP variants, a candidate SNP in FveMYB10 was identified that may underlie the fruit color in the yellow-fruited accessions, which was subsequently confirmed by functional assays. Our lab has previously generated extensive RNA-sequencing data that depict genome-scale gene expression profiles in F. vesca fruit and flower tissues at different developmental stages. To enhance the accessibility of this dataset, the web-based eFP software was adapted for this dataset, allowing visualization of gene expression in any tissues by user-initiated queries. Together, this thesis work proposes a well-supported new model of fruit patterning in Arabidopsis and provides further resources for F. vesca, including genome-wide variant lists and the ability to visualize gene expression. This work will facilitate future work linking traits of economic importance to specific genes and gaining novel insights into fruit patterning and development.