908 resultados para Growth Differentiation Factors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Barrett's esophagus (BE) increases the risk of esophageal adenocarcinoma (EAC). We found the risk to be BE has been associated with single nucleotide polymorphisms (SNPs) on chromosome 6p21 (within the HLA region) and on 16q23, where the closest protein-coding gene is FOXF1. Subsequently, the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON) identified risk loci for BE and esophageal adenocarcinoma near CRTC1 and BARX1, and within 100 kb of FOXP1. We aimed to identify further SNPs that increased BE risk and to validate previously reported associations.

METHODS: We performed a genome-wide association study (GWAS) to identify variants associated with BE and further analyzed promising variants identified by BEACON by genotyping 10,158 patients with BE and 21,062 controls.

RESULTS: We identified 2 SNPs not previously associated with BE: rs3072 (2p24.1; odds ratio [OR] = 1.14; 95% CI: 1.09-1.18; P = 1.8 × 10(-11)) and rs2701108 (12q24.21; OR = 0.90; 95% CI: 0.86-0.93; P = 7.5 × 10(-9)). The closest protein-coding genes were respectively GDF7 (rs3072), which encodes a ligand in the bone morphogenetic protein pathway, and TBX5 (rs2701108), which encodes a transcription factor that regulates esophageal and cardiac development. Our data also supported in BE cases 3 risk SNPs identified by BEACON (rs2687201, rs11789015, and rs10423674). Meta-analysis of all data identified another SNP associated with BE and esophageal adenocarcinoma: rs3784262, within ALDH1A2 (OR = 0.90; 95% CI: 0.87-0.93; P = 3.72 × 10(-9)).

CONCLUSIONS: We identified 2 loci associated with risk of BE and provided data to support a further locus. The genes we found to be associated with risk for BE encode transcription factors involved in thoracic, diaphragmatic, and esophageal development or proteins involved in the inflammatory response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vertebrate body is made by progressive addition of new tissue from progenitors at the posterior embryonic end. Axial extension involves different mechanisms that produce internal organs in the trunk but not in the tail. We show that Gdf11 signaling is a major coordinator of the trunk-to-tail transition. Without Gdf11 signaling, the switch from trunk to tail is significantly delayed, and its premature activation brings the hindlimbs and cloaca next to the forelimbs, leaving extremely short trunks. Gdf11 activity includes activation of Isl1 to promote formation of the hindlimbs and cloaca-associated mesoderm as the most posterior derivatives of lateral mesoderm progenitors. Gdf11 also coordinates reallocation of bipotent neuromesodermal progenitors from the anterior primitive streak to the tail bud, in part by reducing the retinoic acid available to the progenitors. Our findings provide a perspective to understand the evolution of the vertebrate body plan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laurencia dendroidea shows high inter- and intrapopulation variability in the amount of the sesquiterpene elatol, caused by genetic variation as well as environmental factors. To test the independent effect of physical and nutritional conditions, the growth and the levels of elatol in L. dendroidea clones were evaluated under different conditions of temperature, salinity, irradiance, and culture medium in the laboratory. Growth of L. dendroidea was clearly affected by all these factors, but elatol levels were influenced only by temperature and salinity. Better conditions for growth did not produce a similar effect on elatol production in L. dendroidea, contradicting the carbon/nutrient balance and growth/differentiation balance models. On the contrary, severe conditions of temperature and salinity promoted a decrease in elatol levels, as predicted by the environmental stress model. Our results using clones indicated that abiotic factors clearly take part in fostering chemical variations observed in natural populations, in addition to genetic factors, and can promote differential susceptibility of plant specimens to natural enemies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pore architecture of scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for the seeded cells to organize into a functioning tissue. In this report, we investigated the effects of different concentration on silk fibroin protein 3D scaffold pore microstructure. Four pore size ranges of silk fibroin scaffolds were made by freeze-dry technique, with the pore sizes ranging from 50 to 300 µm. The pore size of the scaffold decreases as the concentration increases. Human mesenchymal stem cells were in vitro cultured in these scaffolds. After BMP7 gene transferred, DNA assay, ALP assay, hematoxylin–eosin staining, alizarin red staining and reverse transcription-polymerase chain reaction were performed to analyze the effect of the pore size on cell growth, differentiation and the secretion of extracellular matrix (ECM). Cell morphology in these 3D scaffolds was investigated by confocal microscopy. This study indicates mesenchymal stem cells prefer the group of scaffolds with pore size between 100 and 300 µm for better proliferation and ECM production

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review will focus on the role of sphingosine and its phosphorylated derivative sphingosine-1-phosphate (SPP) in cell growth regulation and signal transduction. We will show that many of the effects attributed to sphingosine in quiescent Swiss 3T3 fibroblasts are mediated via its conversion to SPP. We propose that SPP has appropriate properties to function as an intracellular second messenger based on the following: it elicits diverse cellular responses; it is rapidly produced from sphingosine by a specific kinase and rapidly degraded by a specific lyase; its concentration is low in quiescent cells but increases rapidly and transiently in response to the growth factors, fetal calf serum (FCS) and platelet derived growth factor (PDGF); it releases Ca2+ from internal sources in an InsP3-independent manner; and finally, it may link sphingolipid signaling pathways to cellular ras-mediated signaling pathways by elevating phosphatidic acid levels. The effects of this novel second messenger on growth, differentiation and invasion of human breast cancer cells will be discussed. © 1994 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To gain insight into the mechanisms by which the Myb transcription factor controls normal hematopoiesis and particularly, how it contributes to leukemogenesis, we mapped the genome-wide occupancy of Myb by chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) in ERMYB myeloid progenitor cells. By integrating the genome occupancy data with whole genome expression profiling data, we identified a Myb-regulated transcriptional program. Gene signatures for leukemia stem cells, normal hematopoietic stem/progenitor cells and myeloid development were overrepresented in 2368 Myb regulated genes. Of these, Myb bound directly near or within 793 genes. Myb directly activates some genes known critical in maintaining hematopoietic stem cells, such as Gfi1 and Cited2. Importantly, we also show that, despite being usually considered as a transactivator, Myb also functions to repress approximately half of its direct targets, including several key regulators of myeloid differentiation, such as Sfpi1 (also known as Pu.1), Runx1, Junb and Cebpb. Furthermore, our results demonstrate that interaction with p300, an established coactivator for Myb, is unexpectedly required for Myb-mediated transcriptional repression. We propose that the repression of the above mentioned key pro-differentiation factors may contribute essentially to Myb's ability to suppress differentiation and promote self-renewal, thus maintaining progenitor cells in an undifferentiated state and promoting leukemic transformation. © 2011 The Author(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Critical cellular decisions such as should the cell proliferate, migrate or differentiate, are regulated by stimulatory signals from the extracellular environment, like growth factors. These signals are transformed to cellular responses through their binding to specific receptors present at the surface of the recipient cell. The epidermal growth factor receptor (EGF-R/ErbB) pathway plays key roles in governing these signals to intracellular events and cell-to-cell communication. The EGF-R forms a signaling network that participates in the specification of cell fate and coordinates cell proliferation. Ligand binding triggers receptor dimerization leading to the recruitment of kinases and adaptor proteins. This step simultaneously initiates multiple signal transduction pathways, which result in activation of transcription factors and other target proteins, leading to cellular alterations. It is known that mutations of EGF-R or in the components of these pathways, such as Ras and Raf, are commonly involved in human cancer. The four best characterized signaling pathways induced by EGF-R are the mitogen-activated protein kinase cascades (MAPKs), the lipid kinase phosphatidylinositol 3 kinase (PI3K), a group of transcription factors called Signal Transducers and Activator of Transcription (STAT), and the phospholipase Cγ; (PLCγ) pathways. The activation of each cascade culminates in kinase translocation to the nucleus to stimulate various transcription factors including activator protein 1 (AP-1). AP-1 family proteins are basic leucine zipper (bZIP) transcription factors that are implicated in the regulation of a variety of cellular processes (proliferation and survival, growth, differentiation, apoptosis, cell migration, transformation). Therefore, the regulation of AP-1 activity is critical for the decision of cell fate and their deregulated expression is widely associated with many types of cancers, such as breast and prostate cancers. The aims of this study were to characterize the roles of EGF-R signaling during normal development and malignant growth in vitro and in vivo using different cell lines and tissue samples. We show here that EGF-R regulates cell proliferation but is also required for regulation of AP-1 target gene expression in fibroblasts in a MAP-kinase mediated manner. Furthermore, EGF-R signaling is essential for enterocyte proliferation and migration during intestinal maturation. EGF-R signaling network, especially PI3-K-Akt pathway mediated AP-1 activity is involved in cellular survival in response to ionizing radiation. Taken together, these results elucidate the connection of EGF-R and AP-1 in various cellular contexts and show their importance in the regulation of cellular behaviour presenting new treatment cues for intestinal perforations and cancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eukaryotic cell nucleoplasm is separated from the cytoplasm by the nuclear envelope. This compartmentation of eukaryotic cells requires that all nuclear proteins must be transported from the cytoplasm into the nucleus. Transport of macromolecules between the nucleus and the cytoplasm occurs through nuclear pore complexes (NPCs). Proteins to be targeted into the nucleus by the classical nuclear import system contain nuclear localization signals (NLSs), which are recognized by importin alpha, the NLS receptor. Importin alpha binds to importin beta, which docks the importin-cargo complex on the cytoplasmic side of the NPC and mediates the movement of the complex into the nucleus. Presently six human importin alpha isoforms have been identified. Transcription factors are among the most important regulators of gene expression in eukaryotic organisms. Transcription factors bind to specific DNA sequences on target genes and modulate the activity of the target gene. Many transcription factors, including signal transducers and activators of transcription (STAT) and nuclear factor kB (NF-kB), reside in the cytoplasm in an inactive form, and upon activation they are rapidly transported into the nucleus. In the nucleus STATs and NF-kB regulate the activity of genes whose products are critical in controlling numerous cellular and organismal processes, such as inflammatory and immune responses, cell growth, differentiation and survival. The aim of this study was to investigate the nuclear import mechanisms of STAT and NF-kB transcription factors. This work shows that STAT1 homodimers and STAT1/STAT2 heterodimers bind specifically and directly to importin alpha5 molecule via unconventional dimer-specific NLSs. Importin alpha molecules have two regions, which have been shown to directly interact with the amino acids in the NLS of the cargo molecule. The Arm repeats 2-4 comprise the N-terminal NLS binding site and Arm repeats 7-8 the C-terminal NLS binding site. In this work it is shown that the binding site for STAT1 homodimers and STAT1/STAT2 heterodimers is composed of Arm repeats 8 and 9 of importin alpha5 molecule. This work demonstrates that all NF-kB proteins are transported into the nucleus by importin alpha molecules. In addition, NLS was identified in RelB protein. The interactions between NF-kB proteins and importin alpha molecules were found to be directly mediated by the NLSs of NF-kB proteins. Moreover, we found that p50 binds to the N-terminal and p65 to the C-terminal NLS binding site of importin alpha3. The results from this thesis work identify previously uncharacterized mechanisms in nuclear import of STAT and NF-kB. These findings provide new insights into the molecular mechanisms regulating the signalling cascades of these important transcription factors from the cytoplasm into the nucleus to the target genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insulin-like growth factors (IGEs; IGF-1 and IGF-2) play central roles in cell growth, differentiation, survival, transformation and metastasis. The biologic effects of the IGFs are mediated by the IGF-1 receptor (IGF-1R), a receptor tyrosine kinase with homology to the insulin receptor (IR). Dysregulation of the ICE system is well recognized as a key contributor to the progression of multiple cancers, with IGF-1R activation increasing the tumorigenic potential of breast, prostate, lung, colon and head and neck squamous cell carcinoma (HNSCC). Despite this relationship, targeting the IGF-1R has only recently undergone development as a molecular cancer therapeutic. As it has taken hold, we are witnessing a robust increase and interest in targeting the inhibition of IGF-1R signaling. This is accentuated by the list of over 30 drugs, including monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs) that are under evaluation as single agents or in combination therapies 1]. The ICE-binding proteins (IGFBPs) represent the third component of the ICE system consisting of a class of six soluble secretory proteins. They represent a unique class of naturally occurring ICE-antagonists that bind to and sequester IGF-1 and IGF-2, inhibiting their access to the IGF-1R. Due to their dual targeting of the IGFs without affecting insulin action, the IGFBPs are an untapped ``third'' class of IGF-1R inhibitors. in this commentary, we highlight some of the significant aspects of and prospects for targeting the IGF-1R and describe what the future may hold. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth/differentiation factor 5 (GDF5) and glial cell line-derived neurotrophic factor (GDNF) are neurotrophic factors that promote the survival of midbrain dopaminergic neurons in vitro and in vivo. Both factors have potent neurotrophic and neuroprotective effects in rat models of Parkinson's disease (PD), and may represent promising new therapies for PD. The aim of the present study was to investigate the endogenous expression and function of GDF5 and GDNF in the nigrostriatal dopaminergic system during development and in rat models of PD. Examination of the temporal expression patterns of endogenous GDF5, GDNF, and their respective receptors, in the developing and adult nigrostriatal dopaminergic system suggest that these factors play important roles in promoting the survival and maturation of midbrain dopaminergic neurons during the period of postnatal programmed cell death. The relative levels of GDF5 and GDNF mRNAs in the midbrain and striatum, and their individual temporal expression patterns during development, suggest that their modes of actions are quite distinct in vivo. Furthermore, the sustained expression of GDF5, GDNF, and their receptors into adulthood suggest roles for these factors in the continued support and maintenance of mature nigrostriatal dopaminergic neurons. The present study found that endogenous GDF5, GDNF, and their receptors are differentially expressed in two 6-hydroxydopamine-induced lesion adult rat models of PD. In both terminal and axonal lesion models of PD, GDF5 mRNA levels in the striatum increased at 10 days post-lesion, while GDNF mRNA levels in the nigrostriatal system decreased at 10 and 28 days post-lesion. Thus, despite the fact that exogenous GDF5 and GDNF have similar effects on midbrain dopaminergic neurons in vitro and in vivo, their endogenous responses to a neurotoxic injury are quite distinct. These results highlight the importance of studying the temporal dynamic changes in neurotrophic factor expression during development and in animal models of PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FSH induces expansion of bovine cumulus-oocyte complexes (COCs) in cattle, which can be enhanced by oocyte-secreted factors (OSFs). In this study it was hypothesised that FSH stimulates COC expansion in part from direct stimulation of the epidermal growth factor (EGF)-like ligands amphiregulin (AREG), epiregulin (EREG) and betacellulin (BTC), but also in part through regulation of OSFs or their receptors in cumulus cells. Bovine COCs were cultured in defined medium with graded doses of FSH. In the absence of FSH, COCs did not expand. FSH caused cumulus expansion, and increased the abundance of AREG and EREG mRNA in a time- and dose-dependent manner, but decreased BTC mRNA levels. FSH had modest stimulatory effects on the levels of mRNA encoding the bone morphogenetic protein 15 (BMP15) receptor, BMPR1B, in cumulus cells, but did not alter mRNA expression of the growth and differentiation factor 9 (GDF9) receptor, TGFBR1. More interestingly, FSH dramatically stimulated levels of mRNA encoding two receptors for fibroblast growth factors (FGF), FGFR2C and FGFR3C, in cumulus cells. FSH also stimulated mRNA expression of FGFR1B, but not of FGFR2B in cumulus cells. Based on dose-response studies, FGFR3C was the receptor most sensitive to the influence of FSH. This study demonstrates that FSH stimulates the expression of EGF-like factors in bovine cumulus cells, and provides evidence that FSH differently regulates the expression of distinct receptors for OSFs in cumulus cells. © CSIRO 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ras is a proto-oncogene that codes for a small GTPase and is responsible for linking several extracellular signals to intracellular mechanisms that involve cell growth, differentiation and cell-programmed death in normal and diseased cells. In all these processes, Ras has been extensively investigated. However, the role of Ras GTPases is still poorly understood during the differentiation of 3T3-L1 preadipocytes. In this study I investigated the role of the H-Ras defective mutant, Ras:G12V on the differentiation of 3T3-L1 preadipocytes. Preadipocytes were differentiated in vitro to adipocytes (fat cells) by adding an induction medium containing several factors including glucose and insulin. The formation of fat cells evidenced by the visualization of lipid drops as well as by quantifying the accumulation of Oil red O into lipid drops. To examine the role of Ras:G12V mutant, several selective mutations were introduced in order to determine the signaling transduction pathways (i.e., PI3(K)kinase and MAP(K)Kinase) responsible for the Ras-dependent adipogenesis. Cells expressing Ras:G12V mutant stimulated 3T3-L1 preadipocyte differentiation without he need for induction media, suggesting that Ras activation is an essential factor required for 3T3-L1 preadipocyte differentiation. Introduction of a second mutation on Ras:G12V (i.e., Ras:G12V;E37G), which blocks the activation of the MAPKinase pathway, strongly inhibited the 3T3-L1 preadipocyte differentiation. It is also important to note Ras:G12V:E37G double mutant does not inhibit the activation of the PI3kinase pathway. Other Ras double mutants (Ras:G12V;S35T, and V12G;C40Y) showed a modest inhibition of the 3T3-L1 preadipocyte differentiation. Taken together, these observations indicate that Ras plays a selective role in 3T3-L1 preadipocyte differentiation. Thus, understanding which specific pathway Ras employs during preadipocyte differentiation could clarify some of the uncertainties surrounding fat production.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: Myopia is a common eye disorder affecting up to 90% of children in South East Asia and 30% of the population worldwide. Myopia of high severity is a leading cause of blindness around the world (4th to 5th most common). Changes and remodelling of the sclera i.e. increase cellular proliferation & increase protein synthesis within scleral cells (↑ scleral DNA) and thinning and lose of extracellular matrix of sclera (↓ scleral GAG synthesis) have been linked to myopic eye growth in animal models. Signals acting on the sclera are thought to originate in the retina, and are modulated by the retinal pigment epithelium (RPE) with limited evidence suggesting that the RPE can modify scleral cell growth in culture. However, the mechanism of retinal signal transmission and the role of posterior eye cup tissue, including the RPE, in mediating changes in scleral fibroblast growth during myopia development are unclear. Retinal transmitter systems are critically involved in pathways regulating eye growth, which ultimately lead to alterations in the sclera if eye size is to change. A dopaminergic agonist and muscarinic antagonists decrease the proliferation of scleral chondrocytes when co-cultured with chick’s retinal pigment epithelium (RPE). GABA receptors have recently been localised to chick sclera. We therefore hypothesised that posterior eye cup tissue from myopic eyes would stimulate and from hyperopic eyes would inhibit growth of scleral fibroblasts in vitro and that GABAergic agents could directly interact with scleral cells or indirectly modify the effects of myopic and hyperopic posterior eye cup tissue on scleral fibroblast growth. Method: Fibroblastic cells obtained from 8-day-old chick sclera were used to establish cell banks. Two major experiments were performed. Experiment 1: To determine if posterior eye cup tissues from myopic eye stimulates and hyperopic eye inhibits scleral cell proliferation, when co-cultured with scleral cells in vitro. This study comprised two linked experiments, i) monocular visual treatments of FDM (form-deprivation myopia), LIM (lens-induced myopia) and LIH (lens-induced hyperopia) with assessment of the effect of full punch eye cup tissue on DNA and GAG synthesis by cultured chick scleral fibroblasts, and ii) binocular visual treatments comprising LIM and LIH with assessment of the effect of individual layers of eye cup tissues (neural retina, RPE and choroid) on cultured chick scleral fibroblasts. Visual treatment was applied for 3 days. Experiment 2: To determine the direct interaction of GABA agents on scleral cell growth and to establish whether GABA agents modify the stimulatory/inhibitory effect of myopic and hyperopic posterior eye cup tissues on cultured scleral cell growth in vitro. Two linked experiments were performed. i) GABA agonists (muscimol and baclofen) and GABA antagonists (bicuculine (-), CGP46381 and TPMPA) were added to scleral cell culture medium to determine their direct effect on scleral cells. ii) GABAergic agents (agonists and antagonists) were administered to scleral fibroblasts co-cultured with posterior eye cup tissue (retina, RPE, retina/RPE, RPE/choroid). Ocular tissues were obtained from chick eyes wearing +15D (LIH) or -15D lenses (LIM) for 3 days. In both experiments, tissues were added to hanging cell culture insert (pore size 1.0ìm) placed over each well of 24 well plates while scleral cells were cultured in DMEM/F12, Glutamax (Gibco) plus 10% FBS and penicillin/streptomycin (50U/ml)) and fungizone (1.25ug/ml) (Gibco), at seeding density of 30,000 cells/well at the bottom of the well and allowed to grow for 3 days. Scleral cells proliferation rate throughout the study was evaluated by determining GAG and DNA content of scleral cells using Dimethylmethylene blue (DMMB) dye and Quant-iTTm Pico Green® dsDNA reagent respectively. Results and analysis: Based on DNA and GAG content, there was no significant difference in tissue effect of LIM and LIH eyes on scleral fibroblast growth (DNA: 8.4 ± 1.1μg versus 9.3 ± 2.3 μg, p=0.23; GAG: 10.13 ± 1.4 μg versus 12.67 ± 1.2 μg, F2,23=6.16, p=0.0005) when tissues were obtained from monocularly treated chick eyes (FDM or +15D lens or -15D lens over right eyes with left eyes untreated) and co-cultured as full punch. When chick eyes were treated binocularly with -15D lens (LIM) right eye and +15D lens (LIH) left eyes and tissue layers were separated, the retina from LIM eyes did not stimulate scleral cell proliferation compared to LIH eyes (DNA: 27.2 ± 6.7 μg versus 23.2 ± 1.5 μg, p=0.23; GAG: 28.1 ±3.7 μg versus 28.7 ± 4.2 μg, p=0.21). Similarly, the LIH and LIM choroid did not produce a differential effect based on DNA (LIM 46.9 ± 6.4 μg versus LIH 53.5 ± 4.7 μg, p=0.18), however the choroid from LIH eyes induced higher scleral GAG content than from LIM eyes (32.5 ± 6.7 μg versus 18.9 ± 1.2 μg, p=0.023). In contrast, the RPE from LIM eyes caused a significant increase in fibroblast proliferation whereas the RPE from LIH eyes was relatively inhibitory (72.4 ± 6.3 μg versus 27.9 ± 2.3 μg, F1, 6=69.99, p=0.0005). GAG data were opposite to DNA data e.g. the RPE from LIH eyes increased (33.7 ± 7.9 μg) while the RPE from LIM eyes decreased (28.2 ± 3.0 μg) scleral cell growth (F1, 6=13.99, p=0.010). Based on DNA content, GABA agents had a small direct effect on scleral cell growth; GABA agonists increased (21.4 ± 1.0% and 18.3 ± 1.0% with muscimol and baclofen, p=0.0021), whereas GABA antagonists decreased fibroblast proliferation (-23.7 ± 0.9% with bicuculine & CGP46381 and -28.1 ± 0.5% with TPMPA, p=0.0004). GABA agents also modified the effect of LIM and LIH tissues (p=0.0005).The increase in proliferation rate of scleral fibroblasts co-cultured with tissues (RPE, retina, RPE/retina and RPE/choroid) from LIM treated eyes was enhanced by GABA agonists (muscimol: 27.4 ± 1.2%, 35.8 ± 1.6%, 8.4 ± 0.3% and 11.9 ± 0.6%; baclofen: 27.0 ± 1.0%, 15.8 ± 1.5%, 16.8 ± 1.2% and 15.4 ± 0.4%, p=0.014) whereas GABA antagonists further reduced scleral fibroblasts growth (bicuculine: -52.5 ± 2.5%, -36.9 ± 1.4%, -37.5 ± 0.6% and -53.7 ± 0.9%; TPMPA: 57.3 ± 1.3%, -15.7 ± 1.2%, -33.5 ± 0.4% and -45.9 ± 1.5%; CGP46381: -51.9 ± 1.6%, -28.5 ± 1.5%, -25.4 ± 2.0% and -45.5 ± 1.9% respectively, p=0.0034). GAG data were opposite to DNA data throughout the experiment e.g. GABA agonists further inhibited while antagonists relatively enhanced scleral fibroblasts growth for both LIM and LIH tissue co-culture. The effect of GABA agents was relatively lower (p=0.0004) for tissue from LIH versus LIM eyes but was in a similar direction. There was a significant drug effect on all four tissue types e.g. RPE, retina, RPE/retina and RPE/choroid for both LIM and LIH tissue co-culture (F20,92=3.928, p=0.0005). However, the effect of GABA agents was greatest in co-culture with RPE tissue (F18,36=4.865, p=0.0005). Summary and Conclusion: 1) Retinal defocus signals are transferred to RPE and choroid which then exert their modifying effect on scleral GAG and DNA synthesis either through growth stimulating factors or directly interacting with scleral cells in process of scleral remodeling during LIM and LIH visual conditions. 2) GABAergic agents affect the proliferation of scleral fibroblasts both directly and when co-cultured with ocular tissues in vitro.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives Titanium implant surfaces with modified topographies have improved osteogenic properties in vivo. However, the molecular mechanisms remain obscure. This study explored the signaling pathways responsible for the pro-osteogenic properties of micro-roughened (SLA) and chemically/nanostructurally (modSLA) modified titanium surfaces on human alveolar bone-derived osteoprogenitor cells (BCs) in vitro. Materials and methods The activation of stem cell signaling pathways (TGFβ/BMP, Wnt, FGF, Hedgehog, Notch) was investigated following early exposure (24 and 72 h) of BCs to SLA and modSLA surfaces in the absence of osteogenic cell culture supplements. Results Key regulatory genes from the TGFβ/BMP (TGFBR2, BMPR2, BMPR1B, ACVR1B, SMAD1, SMAD5), Wnt (Wnt/β-catenin and Wnt/Ca2+) (FZD1, FZD3, FZD5, LRP5, NFATC1, NFATC2, NFATC4, PYGO2, LEF1) and Notch (NOTCH1, NOTCH2, NOTCH4, PSEN1, PSEN2, PSENEN) pathways were upregulated on the modified surfaces. These findings correlated with a higher expression of osteogenic markers bone sialoprotein (IBSP) and osteocalcin (BGLAP), and bone differentiation factors BMP2, BMP6, and GDF15, as observed on the modified surfaces. Conclusions These findings demonstrate that the activation of the pro-osteogenic cell signaling pathways by modSLA and SLA surfaces leads to enhanced osteogenic differentiation as evidenced after 7 and 14 days culture in osteogenic media and provides a mechanistic insight into the superior osseointegration on the modified surfaces observed in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose the progressive mechanical expansion of cell-derived tissue analogues as a novel, growth-based approach to in vitro tissue engineering. The prevailing approach to producing tissue in vitro is to culture cells in an exogenous “scaffold” that provides a basic structure and mechanical support. This necessarily pre-defines the final size of the implantable material, and specific signals must be provided to stimulate appropriate cell growth, differentiation and matrix formation. In contrast, surgical skin expansion, driven by increments of stretch, produces increasing quantities of tissue without trauma or inflammation. This suggests that connective tissue cells have the innate ability to produce growth in response to elevated tension. We posit that this capacity is maintained in vitro, and that order-of-magnitude growth may be similarly attained in self-assembling cultures of cells and their own extracellular matrix. The hypothesis that growth of connective tissue analogues can be induced by mechanical expansion in vitro may be divided into three components: (1) tension stimulates cell proliferation and extracellular matrix synthesis; (2) the corresponding volume increase will relax the tension imparted by a fixed displacement; (3) the repeated application of static stretch will produce sustained growth and a tissue structure adapted to the tensile loading. Connective tissues exist in a state of residual tension, which is actively maintained by resident cells such as fibroblasts. Studies in vitro and in vivo have demonstrated that cellular survival, reproduction, and matrix synthesis and degradation are regulated by the mechanical environment. Order-of-magnitude increases in both bone and skin volume have been achieved clinically through staged expansion protocols, demonstrating that tension-driven growth can be sustained over prolonged periods. Furthermore, cell-derived tissue analogues have demonstrated mechanically advantageous structural adaptation in response to applied loading. Together, these data suggest that a program of incremental stretch constitutes an appealing way to replicate tissue growth in cell culture, by harnessing the constituent cells’ innate mechanical responsiveness. In addition to offering a platform to study the growth and structural adaptation of connective tissues, tension-driven growth presents a novel approach to in vitro tissue engineering. Because the supporting structure is secreted and organised by the cells themselves, growth is not restricted by a “scaffold” of fixed size. This also minimises potential adverse reactions to exogenous materials upon implantation. Most importantly, we posit that the growth induced by progressive stretch will allow substantial volumes of connective tissue to be produced from relatively small initial cell numbers.