951 resultados para Group decision
Resumo:
Abstract
Resumo:
The objective of the dissertation is to increase understanding and knowledge in the field where group decision support system (GDSS) and technology selection research overlap in the strategic sense. The purpose is to develop pragmatic, unique and competent management practices and processes for strategic technology assessment and selection from the whole company's point of view. The combination of the GDSS and technology selection is approached from the points of view of the core competence concept, the lead user -method, and different technology types. In this research the aim is to find out how the GDSS contributes to the technology selection process, what aspects should be considered when selecting technologies to be developed or acquired, and what advantages and restrictions the GDSS has in the selection processes. These research objectives are discussed on the basis of experiences and findings in real life selection meetings. The research has been mainly carried outwith constructive, case study research methods. The study contributes novel ideas to the present knowledge and prior literature on the GDSS and technology selection arena. Academic and pragmatic research has been conducted in four areas: 1) the potential benefits of the group support system with the lead user -method,where the need assessment process is positioned as information gathering for the selection of wireless technology development projects; 2) integrated technology selection and core competencies management processes both in theory and in practice; 3) potential benefits of the group decision support system in the technology selection processes of different technology types; and 4) linkages between technology selection and R&D project selection in innovative product development networks. New type of knowledge and understanding has been created on the practical utilization of the GDSS in technology selection decisions. The study demonstrates that technology selection requires close cooperation between differentdepartments, functions, and strategic business units in order to gather the best knowledge for the decision making. The GDSS is proved to be an effective way to promote communication and co-operation between the selectors. The constructs developed in this study have been tested in many industry fields, for example in information and communication, forest, telecommunication, metal, software, and miscellaneous industries, as well as in non-profit organizations. The pragmatic results in these organizations are some of the most relevant proofs that confirm the scientific contribution of the study, according to the principles of the constructive research approach.
Resumo:
The evaluation of investments in advanced technology is one of the most important decision making tasks. The importance is even more pronounced considering the huge budget concerning the strategic, economic and analytic justification in order to shorten design and development time. Choosing the most appropriate technology requires an accurate and reliable system that can lead the decision makers to obtain such a complicated task. Currently, several Information and Communication Technologies (ICTs) manufacturers that design global products are seeking local firms to act as their sales and services representatives (called distributors) to the end user. At the same time, the end user or customer is also searching for the best possible deal for their investment in ICT's projects. Therefore, the objective of this research is to present a holistic decision support system to assist the decision maker in Small and Medium Enterprises (SMEs) - working either as individual decision makers or in a group - in the evaluation of the investment to become an ICT's distributor or an ICT's end user. The model is composed of the Delphi/MAH (Maximising Agreement Heuristic) Analysis, a well-known quantitative method in Group Support System (GSS), which is applied to gather the average ranking data from amongst Decision Makers (DMs). After that the Analytic Network Process (ANP) analysis is brought in to analyse holistically: it performs quantitative and qualitative analysis simultaneously. The illustrative data are obtained from industrial entrepreneurs by using the Group Support System (GSS) laboratory facilities at Lappeenranta University of Technology, Finland and in Thailand. The result of the research, which is currently implemented in Thailand, can provide benefits to the industry in the evaluation of becoming an ICT's distributor or an ICT's end user, particularly in the assessment of the Enterprise Resource Planning (ERP) programme. After the model is put to test with an in-depth collaboration with industrial entrepreneurs in Finland and Thailand, the sensitivity analysis is also performed to validate the robustness of the model. The contribution of this research is in developing a new approach and the Delphi/MAH software to obtain an analysis of the value of becoming an ERP distributor or end user that is flexible and applicable to entrepreneurs, who are looking for the most appropriate investment to become an ERP distributor or end user. The main advantage of this research over others is that the model can deliver the value of becoming an ERP distributor or end user in a single number which makes it easier for DMs to choose the most appropriate ERP vendor. The associated advantage is that the model can include qualitative data as well as quantitative data, as the results from using quantitative data alone can be misleading and inadequate. There is a need to utilise quantitative and qualitative analysis together, as can be seen from the case studies.
Resumo:
Information processing in groups has long been seen as a cooperative process. In contrast with this assumption, group members were rarely found to behave cooperatively: They withhold unshared information and stick to initial incorrect decisions. In the present article, we examined how group members' cooperative and competitivemotives impact on group information processing and propose that information sharing and use in groups could be seen as strategic behavior. We reviewed the latest developments in the literature investigating different forms of strategic information processing and their underlying mechanisms. This review suggests that explicit cooperative goals are needed for effective group decision-making.
Resumo:
This paper sets out to identify the initial positions of the different decisionmakers who intervene in a group decision making process with a reducednumber of actors, and to establish possible consensus paths between theseactors. As a methodological support, it employs one of the most widely-knownmulticriteria decision techniques, namely, the Analytic Hierarchy Process(AHP). Assuming that the judgements elicited by the decision makers follow theso-called multiplicative model (Crawford and Williams, 1985; Altuzarra et al.,1997; Laininen and Hämäläinen, 2003) with log-normal errors and unknownvariance, a Bayesian approach is used in the estimation of the relative prioritiesof the alternatives being compared. These priorities, estimated by way of themedian of the posterior distribution and normalised in a distributive manner(priorities add up to one), are a clear example of compositional data that will beused in the search for consensus between the actors involved in the resolution ofthe problem through the use of Multidimensional Scaling tools
Resumo:
This paper sets out to identify the initial positions of the different decision makers who intervene in a group decision making process with a reduced number of actors, and to establish possible consensus paths between these actors. As a methodological support, it employs one of the most widely-known multicriteria decision techniques, namely, the Analytic Hierarchy Process (AHP). Assuming that the judgements elicited by the decision makers follow the so-called multiplicative model (Crawford and Williams, 1985; Altuzarra et al., 1997; Laininen and Hämäläinen, 2003) with log-normal errors and unknown variance, a Bayesian approach is used in the estimation of the relative priorities of the alternatives being compared. These priorities, estimated by way of the median of the posterior distribution and normalised in a distributive manner (priorities add up to one), are a clear example of compositional data that will be used in the search for consensus between the actors involved in the resolution of the problem through the use of Multidimensional Scaling tools
Resumo:
Currently researchers in the field of personalized recommendations bear little consideration on users' interest differences in resource attributes although resource attribute is usually one of the most important factors in determining user preferences. To solve this problem, the paper builds an evaluation model of user interest based on resource multi-attributes, proposes a modified Pearson-Compatibility multi-attribute group decision-making algorithm, and introduces an algorithm to solve the recommendation problem of k-neighbor similar users. Considering the characteristics of collaborative filtering recommendation, the paper addresses the issues on the preference differences of similar users, incomplete values, and advanced converge of the algorithm. Thus the paper realizes multi-attribute collaborative filtering. Finally, the effectiveness of the algorithm is proved by an experiment of collaborative recommendation among multi-users based on virtual environment. The experimental results show that the algorithm has a high accuracy on predicting target users' attribute preferences and has a strong anti-interference ability on deviation and incomplete values.
Resumo:
We consider the situation where there are several alternatives for investing a quantity of money to achieve a set of objectives. The choice of which alternative to apply depends on how citizens and political representatives perceive that such objectives should be achieved. All citizens with the right to vote can express their preferences in the decision-making process. These preferences may be incomplete. Political representatives represent the citizens who have not taken part in the decision-making process. The weight corresponding to political representatives depends on the number of citizens that have intervened in the decision-making process. The methodology we propose needs the participants to specify for each alternative how they rate the different attributes and the relative importance of attributes. On the basis of this information an expected utility interval is output for each alternative. To do this, an evidential reasoning approach is applied. This approach improves the insightfulness and rationality of the decision-making process using a belief decision matrix for problem modeling and the Dempster?Shafer theory of evidence for attribute aggregation. Finally, we propose using the distances of each expected utility interval from the maximum and the minimum utilities to rank the alternative set. The basic idea is that an alternative is ranked first if its distance to the maximum utility is the smallest, and its distance to the minimum utility is the greatest. If only one of these conditions is satisfied, a distance ratio is then used.
Resumo:
We consider a groupdecision-making problem within multi-attribute utility theory, in which the relative importance of decisionmakers (DMs) is known and their preferences are represented by means of an additive function. We allow DMs to provide veto values for the attribute under consideration and build veto and adjust functions that are incorporated into the additive model. Veto functions check whether alternative performances are within the respective veto intervals, making the overall utility of the alternative equal to 0, where as adjust functions reduce the utilty of the alternative performance to match the preferences of other DMs. Dominance measuring methods are used to account for imprecise information in the decision-making scenario and to derive a ranking of alternatives for each DM. Specifically, ordinal information about the relative importance of criteria is provided by each DM. Finally, an extension of Kemeny's method is used to aggregate the alternative rankings from the DMs accounting for the irrelative importance.
Resumo:
Group decision making is the study of identifying and selecting alternatives based on the values and preferences of the decision maker. Making a decision implies that there are several alternative choices to be considered. This paper uses the concept of Data Envelopment Analysis to introduce a new mathematical method for selecting the best alternative in a group decision making environment. The introduced model is a multi-objective function which is converted into a multi-objective linear programming model from which the optimal solution is obtained. A numerical example shows how the new model can be applied to rank the alternatives or to choose a subset of the most promising alternatives.