993 resultados para Greens Function


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary approaches for people to understand the inner properties of the earth and the distribution of the mineral resources are mainly coming from surface geology survey and geophysical/geochemical data inversion and interpretation. The purpose of seismic inversion is to extract information of the subsurface stratum geometrical structures and the distribution of material properties from seismic wave which is used for resource prospecting, exploitation and the study for inner structure of the earth and its dynamic process. Although the study of seismic parameter inversion has achieved a lot since 1950s, some problems are still persisting when applying in real data due to their nonlinearity and ill-posedness. Most inversion methods we use to invert geophysical parameters are based on iterative inversion which depends largely on the initial model and constraint conditions. It would be difficult to obtain a believable result when taking into consideration different factors such as environmental and equipment noise that exist in seismic wave excitation, propagation and acquisition. The seismic inversion based on real data is a typical nonlinear problem, which means most of their objective functions are multi-minimum. It makes them formidable to be solved using commonly used methods such as general-linearization and quasi-linearization inversion because of local convergence. Global nonlinear search methods which do not rely heavily on the initial model seem more promising, but the amount of computation required for real data process is unacceptable. In order to solve those problems mentioned above, this paper addresses a kind of global nonlinear inversion method which brings Quantum Monte Carlo (QMC) method into geophysical inverse problems. QMC has been used as an effective numerical method to study quantum many-body system which is often governed by Schrödinger equation. This method can be categorized into zero temperature method and finite temperature method. This paper is subdivided into four parts. In the first one, we briefly review the theory of QMC method and find out the connections with geophysical nonlinear inversion, and then give the flow chart of the algorithm. In the second part, we apply four QMC inverse methods in 1D wave equation impedance inversion and generally compare their results with convergence rate and accuracy. The feasibility, stability, and anti-noise capacity of the algorithms are also discussed within this chapter. Numerical results demonstrate that it is possible to solve geophysical nonlinear inversion and other nonlinear optimization problems by means of QMC method. They are also showing that Green’s function Monte Carlo (GFMC) and diffusion Monte Carlo (DMC) are more applicable than Path Integral Monte Carlo (PIMC) and Variational Monte Carlo (VMC) in real data. The third part provides the parallel version of serial QMC algorithms which are applied in a 2D acoustic velocity inversion and real seismic data processing and further discusses these algorithms’ globality and anti-noise capacity. The inverted results show the robustness of these algorithms which make them feasible to be used in 2D inversion and real data processing. The parallel inversion algorithms in this chapter are also applicable in other optimization. Finally, some useful conclusions are obtained in the last section. The analysis and comparison of the results indicate that it is successful to bring QMC into geophysical inversion. QMC is a kind of nonlinear inversion method which guarantees stability, efficiency and anti-noise. The most appealing property is that it does not rely heavily on the initial model and can be suited to nonlinear and multi-minimum geophysical inverse problems. This method can also be used in other filed regarding nonlinear optimization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The substitution of a small fraction x of nitrogen atoms, for the group V elements in conventional III-V semiconductors such as GaAs and GaSb strongly perturbs the conduction band of the host semiconductor. In this thesis we investigate the effects of nitrogen states on the band dispersion, carrier scattering and mobility of dilute nitride alloys. In the supercell model we solve the single particle Hamiltonian for a very large supercell containing randomly placed nitrogen. This model predicts a gap in the density of states of GaNxAs1−x, where this gap is filled in the Green’s function model. Therefore we develop a self-consistent Green’s function (SCGF) approach, which provides excellent agreement with supercell calculations and reveals a gap in the DOS, in contrast with the results of previous non-self-consistent Green’s function calculations. However, including the distribution of N states destroys this gap, as seen in experiment. We then examine the high field transport of carriers by solving the steadystate Boltzmann transport equation and find that it is necessary to include the full distribution of N levels in order to account for the small, low-field mobility and the absence of a negative differential velocity regime observed experimentally with increasing x. Overall the results account well for a wide range of experimental data. We also investigate the band structure, scattering and mobility of carriers by finding the poles of the SCGF, which gives lower carrier mobility for GaNxAs1−x, compared to those already calculated, in better agreement with experiments. The calculated optical absorption spectra for InyGa1−yNxAs1−x and GaNxSb1−x using the SCGF agree well with the experimental data, confirming the validity of this approach to study the band structure of these materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This PhD thesis concerns the computational modeling of the electronic and atomic structure of point defects in technologically relevant materials. Identifying the atomistic origin of defects observed in the electrical characteristics of electronic devices has been a long-term goal of first-principles methods. First principles simulations are performed in this thesis, consisting of density functional theory (DFT) supplemented with many body perturbation theory (MBPT) methods, of native defects in bulk and slab models of In0.53Ga0.47As. The latter consist of (100) - oriented surfaces passivated with A12O3. Our results indicate that the experimentally extracted midgap interface state density (Dit) peaks are not the result of defects directly at the semiconductor/oxide interface, but originate from defects in a more bulk-like chemical environment. This conclusion is reached by considering the energy of charge transition levels for defects at the interface as a function of distance from the oxide. Our work provides insight into the types of defects responsible for the observed departure from ideal electrical behaviour in III-V metal-oxidesemiconductor (MOS) capacitors. In addition, the formation energetics and electron scattering properties of point defects in carbon nanotubes (CNTs) are studied using DFT in conjunction with Green’s function based techniques. The latter are applied to evaluate the low-temperature, low-bias Landauer conductance spectrum from which mesoscopic transport properties such as the elastic mean free path and localization length of technologically relevant CNT sizes can be estimated from computationally tractable CNT models. Our calculations show that at CNT diameters pertinent to interconnect applications, the 555777 divacancy defect results in increased scattering and hence higher electrical resistance for electron transport near the Fermi level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple method is presented to evaluate the effects of short-range correlations on the momentum distribution of nucleons in nuclear matter within the framework of the Greens function approach. The method provides a very efficient representation of the single-particle Greens function for a correlated system. The reliability of this method is established by comparing its results to those obtained in more elaborate calculations. The sensitivity of the momentum distribution on the nucleon-nucleon interaction and the nuclear density is studied. The momentum distributions of nucleons in finite nuclei are derived from those in nuclear matter using a local-density approximation. These results are compared to those obtained directly for light nuclei like 16O.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microstrip antennas are widely used in modern telecommunication systems. This is particularly due to the great variety of geometries and because they are easily built and integrated to other high frequency devices and circuits. This work presents a study of the properties of the microstrip antenna with an aperture impressed in the conducting patch. Besides, the analysis is performed for isotropic and anisotropic dielectric substrates. The Multiport Network Model MNM is used in combination with the Segmentation Method and the Greens function technique in the analysis of the considered microstrip antenna geometries. The numerical analysis is performed by using the boundary value problem solution, by considering separately the impedance matrix of the structure segments. The analysis for the complete structure is implemented by choosing properly the number and location of the neighboor element ports. The numerial analysis is performed for the following antenna geometries: resonant cavity, microstrip rectangular patch antenna, and microstrip rectangular patch antenna with aperture. The analysis is firstly developed for microstrip antennas on isotropic substrates, and then extended to the case of microstrip antennas on anisotropic substrates by using a Mapping Method. The experimental work is described and related to the development of several prototypes of rectangular microstrip patch antennas wtih and without rectangular apertures. A good agreement was observed between the simulated and measured results. Thereafter, a good agreement was also observed between the results of this work and those shown in literature for microstrip antennas on isotropic substrates. Furthermore, results are proposed for rectangular microstrip patch antennas wtih rectangular apertures in the conducting patch

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Matematica Aplicada e Computacional - FCT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel method to probe the diverse phases for the extended Hubbard model (EHM), including the correlated hopping term, is presented. We extend an effective medium approach [1] to a bipartite lattice, allowing for charge- and/or spin-ordered phases. We calculate the necessary correlation functions to build the EHM phase diagram.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The only nuclear model independent method for the determination of nuclear charge radii of short-lived radioactive isotopes is the measurement of the isotope shift. For light elements (Z < 10) extremely high accuracy in experiment and theory is required and was only reached for He and Li so far. The nuclear charge radii of the lightest elements are of great interest because they have isotopes which exhibit so-called halo nuclei. Those nuclei are characterized by a a very exotic nuclear structure: They have a compact core and an area of less dense nuclear matter that extends far from this core. Examples for halo nuclei are 6^He, 8^He, 11^Li and 11^Be that is investigated in this thesis. Furthermore these isotopes are of interest because up to now only for such systems with a few nucleons the nuclear structure can be calculated ab-initio. In the Institut für Kernchemie at the Johannes Gutenberg-Universität Mainz two approaches with different accuracy were developed. The goal of these approaches was the measurement of the isotope shifts between (7,10,11)^Be^+ and 9^Be^+ in the D1 line. The …first approach is laser spectroscopy on laser cooled Be^+ ions that are trapped in a linear Paul trap. The accessible accuracy should be in the order of some 100 kHz. In this thesis two types of linear Paul traps were developed for this purpose. Moreover, the peripheral experimental setup was simulated and constructed. It allows the efficient deceleration of fast ions with an initial energy of 60 keV down to some eV and an effcient transport into the ion trap. For one of the Paul traps the ion trapping could already be demonstrated, while the optical detection of captured 9^Be^+ ions could not be completed, because the development work was delayed by the second approach. The second approach uses the technique of collinear laser spectroscopy that was already applied in the last 30 years for measuring isotope shifts of plenty of heavier isotopes. For light elements (Z < 10), it was so far not possible to reach the accuracy that is required to extract information about nuclear charge radii. The combination of collinear laser spectroscopy with the most modern methods of frequency metrology …finally permitted the …first-time determination of the nuclear charge radii of (7,10)^Be and the one neutron halo nucleus 11^Be at the COLLAPS experiment at ISOLDE/ CERN. In the course of the work reported in this thesis it was possible to measure the absolute transition frequencies and the isotope shifts in the D1 line for the Be isotopes mentioned above with an accuracy of better than 2 MHz. Combination with the most recent calculations of the mass effect allowed the extraction of the nuclear charge radii of (7,10,11)^Be with an relative accuracy better than 1%. The nuclear charge radius decreases from 7^Be continuously to 10^Be and increases again for 11^Be. This result is compared with predictions of ab-initio nuclear models which reproduce the observed trend. Particularly the "Greens Function Monte Carlo" and the "Fermionic Molecular Dynamic" model show very good agreement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently nanoscale junctions consisting of 0-D nanostructures (single molecule) or 1-D nanostructures (semiconducting nanowire) sandwiched between two metal electrodes are successfully fabricated and characterized. What lacks in the recent developments is the understanding of the mechanism behind the observed phenomena at the level of atoms and electrons. For example, the origin of observed switching effect in a semiconducting nanowire due to the influence of an external gate bias is not yet understood at the electronic structure level. On the same context, different experimental groups have reported different signs in tunneling magneto-resistance for the same organic spin valve structure, which has baffled researchers working in this field. In this thesis, we present the answers to some of these subtle questions by investigating the charge and spin transport in different nanoscale junctions. A parameter-free, single particle Green’s function approach in conjunction with a posteriori density functional theory (DFT) involving a hybrid orbital dependent functional is used to calculate the tunneling current in the coherent transport limit. The effect of spin polarization is explicitly incorporated to investigate spin transport in a nanoscale junction. Through the electron transport studies in PbS nanowire junction, a new orbital controlled mechanism behind the switching of the current is proposed. It can explain the switching behavior, not only in PbS nanowire, but in other lead-chalcogenide nanowires as well. Beside this, the electronic structure properties of this nanowire are studied using periodic DFT. The quantum confinement effect was investigated by calculating the bandgap of PbS nanowires with different diameters. Subsequently, we explain an observed semiconducting to metallic phase transition of this nanowire by calculating the bandgap of the nanowire under uniform radial strain. The compressive radial strain on the nanowire was found to be responsible for the metallic to semiconducting phase transition. Apart from studying one dimensional nanostructure, we also present transport properties in zero dimensional single molecular junctions. We proposed a new codoping approach in a single molecular carborane junction, where a cation and an anion are simultaneously doped to find the role of a single atom in the device. The main purpose was to build a molecular junction where a single atom can dictate the flow of electrons in a circuit. Recent observations of both positive and negative sign in tunneling magnetoresistance (TMR) the using same organic spin-valve structure hasmystified researchers. From our spin dependent transport studies in a prototypical organic molecular tunneling device, we found that a 3% change in metal-molecule interfacial distance can alter the sign of TMR. Changing the interfacial distance by 3%, the number of participating eigenstates as well as their orbital characteristic changes for anti-parallel configuration of the magnetization at the two electrodes, leading to the sign reversal of the TMR. Apart from this, the magnetic proximity effect under applied bias is investigated quantitatively, which can be used to understand the observed unexpectedmagnetismin carbon basedmaterials when they are in close proximity with magnetic substrates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Squeeze film damping effects naturally occur if structures are subjected to loading situations such that a very thin film of fluid is trapped within structural joints, interfaces, etc. An accurate estimate of squeeze film effects is important to predict the performance of dynamic structures. Starting from linear Reynolds equation which governs the fluid behavior coupled with structure domain which is modeled by Kirchhoff plate equation, the effects of nondimensional parameters on the damped natural frequencies are presented using boundary characteristic orthogonal functions. For this purpose, the nondimensional coupled partial differential equations are obtained using Rayleigh-Ritz method and the weak formulation, are solved using polynomial and sinusoidal boundary characteristic orthogonal functions for structure and fluid domain respectively. In order to implement present approach to the complex geometries, a two dimensional isoparametric coupled finite element is developed based on Reissner-Mindlin plate theory and linearized Reynolds equation. The coupling between fluid and structure is handled by considering the pressure forces and structural surface velocities on the boundaries. The effects of the driving parameters on the frequency response functions are investigated. As the next logical step, an analytical method for solution of squeeze film damping based upon Green’s function to the nonlinear Reynolds equation considering elastic plate is studied. This allows calculating modal damping and stiffness force rapidly for various boundary conditions. The nonlinear Reynolds equation is divided into multiple linear non-homogeneous Helmholtz equations, which then can be solvable using the presented approach. Approximate mode shapes of a rectangular elastic plate are used, enabling calculation of damping ratio and frequency shift as well as complex resistant pressure. Moreover, the theoretical results are correlated and compared with experimental results both in the literature and in-house experimental procedures including comparison against viscoelastic dampers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The precise evaluation of electromagnetic field (EMF) distributions inside biological samples is becoming an increasingly important design requirement for high field MRI systems. In evaluating the induced fields caused by magnetic field gradients and RF transmitter coils, a multilayered dielectric spherical head model is proposed to provide a better understanding of electromagnetic interactions when compared to a traditional homogeneous head phantom. This paper presents Debye potential (DP) and Dyadic Green's function (DGF)-based solutions of the EMFs inside a head-sized, stratified sphere with similar radial conductivity and permittivity profiles as a human head. The DP approach is formulated for the symmetric case in which the source is a circular loop carrying a harmonic-formed current over a wide frequency range. The DGF method is developed for generic cases in which the source may be any kind of RF coil whose current distribution can be evaluated using the method of moments. The calculated EMFs can then be used to deduce MRI imaging parameters. The proposed methods, while not representing the full complexity of a head model, offer advantages in rapid prototyping as the computation times are much lower than a full finite difference time domain calculation using a complex head model. Test examples demonstrate the capability of the proposed models/methods. It is anticipated that this model will be of particular value for high field MRI applications, especially the rapid evaluation of RF resonator (surface and volume coils) and high performance gradient set designs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 26A33; Secondary 47G20, 31B05