918 resultados para Greenhouse gas fluxes
Resumo:
Tutkimus suomalaisten yritysten liiketoimintamahdollisuuksista hiilidoksidipäästöjen vähentämisen parissa Luoteis-Venäjällä.
Resumo:
[cat] Les normes socials han estat incloses en la teoria de l’acció col.lectiva per a superar les dificultats per explicar perquè la gestió del béns comuns podria ser més efectiva quan s’autoregula per les mateixes comunitats. El paper rellevant de la confiança en els altres s’ha identificat en diversos contextos d’acció social a nivell local, però només recentment s’ha considerat la idea que també podria ser rellevant en el cas de béns comuns de caire global, seguint l’evidència bàsicament descriptiva recollida per Elinor Ostrom. Però fins ara no hi havia proves quantitatives disponibles d’aquesta idea. Utilitzant un conjunt de dades de 29 països europeus durant el període 1990-2007, donem evidència empírica a favor del paper del nivell de confiança en els altres en el context dels béns públics globals. Concloem que el nivell de confiança en els altres té un impacte reductor de les emissions de gasos d’efecte hivernacle; per exemple, l’extrapolació dels resultats implicaria una reducció d’emissions d’Espanya del 12,5% si el nivell mitjà de confiança en els altres dels espanyols fos tan elevat com els dels suecs.
Resumo:
[cat] Les normes socials han estat incloses en la teoria de l’acció col.lectiva per a superar les dificultats per explicar perquè la gestió del béns comuns podria ser més efectiva quan s’autoregula per les mateixes comunitats. El paper rellevant de la confiança en els altres s’ha identificat en diversos contextos d’acció social a nivell local, però només recentment s’ha considerat la idea que també podria ser rellevant en el cas de béns comuns de caire global, seguint l’evidència bàsicament descriptiva recollida per Elinor Ostrom. Però fins ara no hi havia proves quantitatives disponibles d’aquesta idea. Utilitzant un conjunt de dades de 29 països europeus durant el període 1990-2007, donem evidència empírica a favor del paper del nivell de confiança en els altres en el context dels béns públics globals. Concloem que el nivell de confiança en els altres té un impacte reductor de les emissions de gasos d’efecte hivernacle; per exemple, l’extrapolació dels resultats implicaria una reducció d’emissions d’Espanya del 12,5% si el nivell mitjà de confiança en els altres dels espanyols fos tan elevat com els dels suecs.
Resumo:
The objective of this paper was to show the potential additional insight that result from adding greenhouse gas (GHG) emissions to plant performance evaluation criteria, such as effluent quality (EQI) and operational cost (OCI) indices, when evaluating (plant-wide) control/operational strategies in wastewater treatment plants (WWTPs). The proposed GHG evaluation is based on a set of comprehensive dynamic models that estimate the most significant potential on-site and off-site sources of CO2, CH4 and N2O. The study calculates and discusses the changes in EQI, OCI and the emission of GHGs as a consequence of varying the following four process variables: (i) the set point of aeration control in the activated sludge section; (ii) the removal efficiency of total suspended solids (TSS) in the primary clarifier; (iii) the temperature in the anaerobic digester; and (iv) the control of the flow of anaerobic digester supernatants coming from sludge treatment. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects of increased GHG production when carrying out local energy optimization of the aeration system in the activated sludge section and energy recovery from the AD. Although off-site CO2 emissions may decrease, the effect is counterbalanced by increased N2O emissions, especially since N2O has a 300-fold stronger greenhouse effect than CO2. The reported results emphasize the importance and usefulness of using multiple evaluation criteria to compare and evaluate (plant-wide) control strategies in a WWTP for more informed operational decision making
Resumo:
Forest biomass represents a geographically distributed feedstock, and geographical location affects the greenhouse gas (GHG) performance of a given forest-bioenergy system in several ways. For example, biomass availability, forest operations, transportation possibilities and the distances involved, biomass end-use possibilities, fossil reference systems, and forest carbon balances all depend to some extent on location. The overall objective of this thesis was to assess the GHG emissions derived from supply and energy-utilization chains of forest biomass in Finland, with a specific focus on the effect of location in relation to forest biomass’s availability and the transportation possibilities. Biomass availability and transportation-network assessments were conducted through utilization of geographical information system methods, and the GHG emissions were assessed by means of lifecycle assessment. The thesis is based on four papers in which forest biomass supply on industrial scale was assessed. The feedstocks assessed in this thesis include harvesting residues, smalldiameter energy wood and stumps. The principal implication of the findings in this thesis is that in Finland, the location and availability of biomass in the proximity of a given energyutilization or energy-conversion plant is not a decisive factor in supply-chain GHG emissions or the possible GHG savings to be achieved with forest-biomass energy use. Therefore, for the greatest GHG reductions with limited forest-biomass resources, energy utilization of forest biomass in Finland should be directed to the locations where most GHG savings are achieved through replacement of fossil fuels. Furthermore, one should prioritize the types of forest biomass with the lowest direct supply-chain GHG emissions (e.g., from transport and comminution) and the lowest indirect ones (in particular, soil carbon-stock losses), regardless of location. In this respect, the best combination is to use harvesting residues in combined heat and power production, replacing peat or coal.
Resumo:
More discussion is required on how and which types of biomass should be used to achieve a significant reduction in the carbon load released into the atmosphere in the short term. The energy sector is one of the largest greenhouse gas (GHG) emitters and thus its role in climate change mitigation is important. Replacing fossil fuels with biomass has been a simple way to reduce carbon emissions because the carbon bonded to biomass is considered as carbon neutral. With this in mind, this thesis has the following objectives: (1) to study the significance of the different GHG emission sources related to energy production from peat and biomass, (2) to explore opportunities to develop more climate friendly biomass energy options and (3) to discuss the importance of biogenic emissions of biomass systems. The discussion on biogenic carbon and other GHG emissions comprises four case studies of which two consider peat utilization, one forest biomass and one cultivated biomasses. Various different biomass types (peat, pine logs and forest residues, palm oil, rapeseed oil and jatropha oil) are used as examples to demonstrate the importance of biogenic carbon to life cycle GHG emissions. The biogenic carbon emissions of biomass are defined as the difference in the carbon stock between the utilization and the non-utilization scenarios of biomass. Forestry-drained peatlands were studied by using the high emission values of the peatland types in question to discuss the emission reduction potential of the peatlands. The results are presented in terms of global warming potential (GWP) values. Based on the results, the climate impact of the peat production can be reduced by selecting high-emission-level peatlands for peat production. The comparison of the two different types of forest biomass in integrated ethanol production in pulp mill shows that the type of forest biomass impacts the biogenic carbon emissions of biofuel production. The assessment of cultivated biomasses demonstrates that several selections made in the production chain significantly affect the GHG emissions of biofuels. The emissions caused by biofuel can exceed the emissions from fossil-based fuels in the short term if biomass is in part consumed in the process itself and does not end up in the final product. Including biogenic carbon and other land use carbon emissions into the carbon footprint calculations of biofuel reveals the importance of the time frame and of the efficiency of biomass carbon content utilization. As regards the climate impact of biomass energy use, the net impact on carbon stocks (in organic matter of soils and biomass), compared to the impact of the replaced energy source, is the key issue. Promoting renewable biomass regardless of biogenic GHG emissions can increase GHG emissions in the short term and also possibly in the long term.
Resumo:
Global warming is assertively the greatest environmental challenge for humans of 21st century. It is primarily caused by the anthropogenic greenhouse gas (GHG) that trap heat in the atmosphere. Because of which, the GHG emission mitigation, globally, is a critical issue in the political agenda of all high-profile nations. India, like other developing countries, is facing this threat of climate change while dealing with the challenge of sustaining its rapid economic growth. India’s economy is closely connected to its natural resource base and climate sensitive sectors like water, agriculture and forestry. Due to Climate change the quality and distribution of India’s natural resources may transform and lead to adverse effects on livelihood of its people. Therefore, India is expected to face a major threat due to the projected climate change. This study proposes possible solutions for GHG emission mitigation that are specific to the power sector of India. The methods discussed here will take Indian power sector from present coal dominant ideology to a system, centered with renewable energy sources. The study further proposes a future scenario for 2050, based on the present Indian government policies and global energy technologies advancements.
Resumo:
The aim of this thesis is to study whether the use of biomethane as a transportation fuel is reasonable from climate change perspective. In order to identify potentials and challenges for the reduction of greenhouse gas (GHG) emissions, this dissertation focuses on GHG emission comparisons, on feasibility studies and on the effects of various calculation methodologies. The GHG emissions calculations are carried out by using life cycle assessment (LCA) methodologies. The aim of these LCA studies is to figure out the key parameters affecting the GHG emission saving potential of biomethane production and use and to give recommendations related to methodological choices. The feasibility studies are also carried out from the life cycle perspective by dividing the biomethane production chain for various operators along the life cycle of biomethane in order to recognize economic bottlenecks. Biomethane use in the transportation sector leads to GHG emission reductions compared to fossil transportation fuels in most cases. In addition, electricity and heat production from landfill gas, biogas or biomethane leads to GHG reductions as well. Electricity production for electric vehicles is also a potential route to direct biogas or biomethane energy to transportation sector. However, various factors along the life cycle of biomethane affect the GHG reduction potentials. Furthermore, the methodological selections have significant effects on the results. From economic perspective, there are factors related to different operators along the life cycle of biomethane, which are not encouraging biomethane use in the transportation sector. To minimize the greenhouse gas emissions from the life cycle of biomethane, waste feedstock should be preferred. In addition, energy consumption, methane leakages, digestate utilization and the current use of feedstock or biogas are also key factors. To increase the use of biomethane in the transportation sector, political steering is needed to improve the feasibility for the operators. From methodological perspective, it is important to recognize the aim of the life cycle assessment study. The life cycle assessment studies can be divided into two categories: 1.) To produce average GHG information of biomethane to evaluate the acceptability of biomethane use compared to fossil transportation fuels. 2.) To produce GHG information of biomethane related to actual decision-making situations. This helps to figure out the actual GHG emission changes in cases when feedstock, biogas or biomethane are already in other use. For example directing biogas from electricity production to transportation use does not necessarily lead to additional GHG emission reductions. The use of biomethane seems to have a lot of potential for the reduction of greenhouse gas emissions as a transportation fuel. However, there are various aspects related to production processes, to the current use of feedstock or biogas and to the feasibility that have to be taken into account.
Resumo:
Cement industry significantly associated with high greenhouse gas (GHG) emissions. Considering the environmental impact, particularly global warming potential, it is important to reduce these emissions to air. The aim of the study is to investigate the mitigation possibility of GHG emissions in Ethiopian cement industry. Life cycle assessment (LCA) method used to identify and quantify GHG emissions during one ton of ordinary portland cement (OPC) production. Three mitigation scenarios: alternative fuel use, clinker substitution and thermal energy efficiency were applied on a representative gate-to-gate flow model developed with GaBi 6 software. The results of the study indicate that clinker substitution and alternative fuel use play a great role for GHG emissions mitigation with affordable cost. Applying most energy efficient kiln technology, which in turn reduces the amount of thermal energy use, has the least GHG emissions reduction intensity and high implementation cost comparing to the other scenarios. It was found that the cumulative GHG emissions mitigation potential along with other selected mitigation scenarios can be at least 48.9% per ton of cement production.
Resumo:
In Khartoum (Sudan) a particular factor shaping urban land use is the rapid expansion of red brick making (BM) for the construction of houses which occurs on the most fertile agricultural Gerif soils along the Nile banks. The objectives of this study were to assess the profitability of BM, to explore the income distribution among farmers and kiln owners, to measure the dry matter (DM), nitrogen (N), phosphorus (P), potassium (K) and organic carbon (C_org) in cow dung used for BM, and to estimate the greenhouse gas (GHG) emissions from burned biomass fuel (cow dung and fuel wood). About 49 kiln owners were interviewed in 2009 using a semi-structured questionnaire that allowed to record socio-economic and variable cost data for budget calculations, and determination of Gini coefficients. Samples of cow dung were collected directly from the kilns and analyzed for their nutrients concentrations. To estimate GHG emissions a modified approach of the Intergovernmental Panel on Climate Change (IPCC) was used. The land rental value from red brick kilns was estimated at 5-fold the rental value from agriculture and the land rent to total cost ratio was 29% for urban farms compared to 6% for BM. The Gini coefficients indicated that income distribution among kiln owners was more equal than among urban farmers. Using IPCC default values the 475, 381, and 36 t DM of loose dung, compacted dung, and fuel wood used for BM emit annually 688, 548, and 60 t of GHGs, respectively.
Resumo:
Preferred structures in the surface pressure variability are investigated in and compared between two 100-year simulations of the Hadley Centre climate model HadCM3. In the first (control) simulation, the model is forced with pre-industrial carbon dioxide concentration (1×CO2) and in the second simulation the model is forced with doubled CO2 concentration (2×CO2). Daily winter (December-January-February) surface pressures over the Northern Hemisphere are analysed. The identification of preferred patterns is addressed using multivariate mixture models. For the control simulation, two significant flow regimes are obtained at 5% and 2.5% significance levels within the state space spanned by the leading two principal components. They show a high pressure centre over the North Pacific/Aleutian Islands associated with a low pressure centre over the North Atlantic, and its reverse. For the 2×CO2 simulation, no such behaviour is obtained. At higher-dimensional state space, flow patterns are obtained from both simulations. They are found to be significant at the 1% level for the control simulation and at the 2.5% level for the 2×CO2 simulation. Hence under CO2 doubling, regime behaviour in the large-scale wave dynamics weakens. Doubling greenhouse gas concentration affects both the frequency of occurrence of regimes and also the pattern structures. The less frequent regime becomes amplified and the more frequent regime weakens. The largest change is observed over the Pacific where a significant deepening of the Aleutian low is obtained under CO2 doubling.