993 resultados para Green functions
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the importance of propagators and Green functions in Quantum Mechanics. Then we project the covariant quantum propagator onto the light front time to get the propagator for scalar particles in these coordinates. This operator propagates the wave function from x(+) = 0 to x(+) > 0. It corresponds to the definition of the time ordering operation in the light front time x(+). We calculate the light-front Green's function for 2 interacting bosons propagating forward in x(+). We also show how to write down the light front Green's function from the Feynman propagator and finally make a generalization to N bosons.
Antiparticle Contribution in the Cross Ladder Diagram for Bethe-Salpeter Equation in the Light-Front
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We calculate the Green functions of the two versions of the generalized Schwinger model, the anomalous and the nonanomalous one, in their higher order Lagrangian density form. Furthermore, it is shown through a sequence of transformations that the bosonized Lagrangian density is equivalent to the former, at least for the bosonic correlation functions. The introduction of the sources from the beginning, leading to a gauge-invariant source term, is also considered. It is verified that the two models have the same correlation functions only if the gauge-invariant sector is taken into account. Finally, there is presented a generalization of the Wess-Zumino term, and its physical consequences are studied, in particular the appearance of gauge-dependent massive excitations.
Resumo:
We propose general three-dimensional potentials in rotational and cylindrical parabolic coordinates which are generated by direct products of the SO(2, 1) dynamical group. Then we construct their Green functions algebraically and find their spectra. Particular cases of these potentials which appear in the literature are also briefly discussed.
Resumo:
In this work we develop the Hamilton - Jacobi formalism to study the Podolsky electromagnetic theory on the null-plane coordinates. We calculate the generators of the Podolsky theory and check the integrability conditions. Appropriate boundary conditions are introduced to assure uniqueness of the Green functions associated to the differential operators. Non-involutive constraints in the Hamilton-Jacobi formalism are eliminated by constructing their respective generalized brackets. © 2013 American Institute of Physics.
Resumo:
O grafeno é a primeira estrutura bidimensional que se obteve experimentalmente. Sua rede cristalina é uma rede hexagonal, conhecida como "Favo de Mel", possui apenas um átomo de espessura. Cortes em folhas de grafeno, privilegiando determinada direção, geram as chamadas nanofitas de grafeno. Embora o grafeno se comporte como um metal, é sabido que as nanofitas podem apresentar comportamentos semicondutor, metálico ou semimetálico, dependendo da direção de corte e/ou largura da fita. No caso de nanofitas semicondutoras, a largura da banda proibida (band gap), entre outros fatores, depende da largura da nanofita. Neste trabalho adotou-se métodos de primeiros princípios como o DFT (Density Functional Theory), afim de se obter as características tais como curvas de dispersão para nanofitas. Neste trabalho, primeiramente, são apresentados diagramas de bandas de energia e curvas de densidade de estados para nanofitas de grafeno semicondutoras, de diferentes larguras, e na ausência de influências externas. Utilizou-se métodos de primeiros princípios para a obtenção destas curvas e o método das funções de Green do Não Equilíbrio para o transporte eletrônico. Posteriormente foi investigado a influência da hidrogenização, temperatura e tensão mecânica sobre sistema, isso além, de se estudar o comportamento de transporte eletrônico com e sem influência destes fatores externos. Vale ressaltar que as nanofitas de grafeno apresentam possibilidades reais de aplicação em nanodispositivos eletrônicos, a exemplo de nanodiodos e nanotransistores. Por esse motivo, é importante se ter o entendimento de como os fatores externos alteram as propriedades de tal material, pois assim, espera-se que as propriedades de dispositivos eletrônicos também sejam influenciadas da mesma maneira que as nanofitas.
Resumo:
We consider a N - S box system consisting of a rectangular conductor coupled to a superconductor. The Green functions are constructed by solving the Bogoliubov-de Gennes equations at each side of the interface, with the pairing potential described by a step-like function. Taking into account the mismatch in the Fermi wave number and the effective masses of the normal metal - superconductor and the tunnel barrier at the interface, we use the quantum section method in order to find the exact energy Green function yielding accurate computed eigenvalues and the density of states. Furthermore, this procedure allow us to analyze in detail the nontrivial semiclassical limit and examine the range of applicability of the Bohr-Sommerfeld quantization method.
Resumo:
We study some perturbative and nonperturbative effects in the framework of the Standard Model of particle physics. In particular we consider the time dependence of the Higgs vacuum expectation value given by the dynamics of the StandardModel and study the non-adiabatic production of both bosons and fermions, which is intrinsically non-perturbative. In theHartree approximation, we analyze the general expressions that describe the dissipative dynamics due to the backreaction of the produced particles. Then, we solve numerically some relevant cases for the Standard Model phenomenology in the regime of relatively small oscillations of the Higgs vacuum expectation value (vev). As perturbative effects, we consider the leading logarithmic resummation in small Bjorken x QCD, concentrating ourselves on the Nc dependence of the Green functions associated to reggeized gluons. Here the eigenvalues of the BKP kernel for states of more than three reggeized gluons are unknown in general, contrary to the large Nc limit (planar limit) case where the problem becomes integrable. In this contest we consider a 4-gluon kernel for a finite number of colors and define some simple toy models for the configuration space dynamics, which are directly solvable with group theoretical methods. In particular we study the depencence of the spectrum of thesemodelswith respect to the number of colors andmake comparisons with the planar limit case. In the final part we move on the study of theories beyond the Standard Model, considering models built on AdS5 S5/Γ orbifold compactifications of the type IIB superstring, where Γ is the abelian group Zn. We present an appealing three family N = 0 SUSY model with n = 7 for the order of the orbifolding group. This result in a modified Pati–Salam Model which reduced to the StandardModel after symmetry breaking and has interesting phenomenological consequences for LHC.
Resumo:
The topic of my Ph.D. thesis is the finite element modeling of coseismic deformation imaged by DInSAR and GPS data. I developed a method to calculate synthetic Green functions with finite element models (FEMs) and then use linear inversion methods to determine the slip distribution on the fault plane. The method is applied to the 2009 L’Aquila Earthquake (Italy) and to the 2008 Wenchuan earthquake (China). I focus on the influence of rheological features of the earth's crust by implementing seismic tomographic data and the influence of topography by implementing Digital Elevation Models (DEM) layers on the FEMs. Results for the L’Aquila earthquake highlight the non-negligible influence of the medium structure: homogeneous and heterogeneous models show discrepancies up to 20% in the fault slip distribution values. Furthermore, in the heterogeneous models a new area of slip appears above the hypocenter. Regarding the 2008 Wenchuan earthquake, the very steep topographic relief of Longmen Shan Range is implemented in my FE model. A large number of DEM layers corresponding to East China is used to achieve the complete coverage of the FE model. My objective was to explore the influence of the topography on the retrieved coseismic slip distribution. The inversion results reveals significant differences between the flat and topographic model. Thus, the flat models frequently adopted are inappropriate to represent the earth surface topographic features and especially in the case of the 2008 Wenchuan earthquake.
Resumo:
The objective of this work of thesis is the refined estimations of source parameters. To such a purpose we used two different approaches, one in the frequency domain and the other in the time domain. In frequency domain, we analyzed the P- and S-wave displacement spectra to estimate spectral parameters, that is corner frequencies and low frequency spectral amplitudes. We used a parametric modeling approach which is combined with a multi-step, non-linear inversion strategy and includes the correction for attenuation and site effects. The iterative multi-step procedure was applied to about 700 microearthquakes in the moment range 1011-1014 N•m and recorded at the dense, wide-dynamic range, seismic networks operating in Southern Apennines (Italy). The analysis of the source parameters is often complicated when we are not able to model the propagation accurately. In this case the empirical Green function approach is a very useful tool to study the seismic source properties. In fact the Empirical Green Functions (EGFs) consent to represent the contribution of propagation and site effects to signal without using approximate velocity models. An EGF is a recorded three-component set of time-histories of a small earthquake whose source mechanism and propagation path are similar to those of the master event. Thus, in time domain, the deconvolution method of Vallée (2004) was applied to calculate the source time functions (RSTFs) and to accurately estimate source size and rupture velocity. This technique was applied to 1) large event, that is Mw=6.3 2009 L’Aquila mainshock (Central Italy), 2) moderate events, that is cluster of earthquakes of 2009 L’Aquila sequence with moment magnitude ranging between 3 and 5.6, 3) small event, i.e. Mw=2.9 Laviano mainshock (Southern Italy).
Resumo:
We have developed a method for locating sources of volcanic tremor and applied it to a dataset recorded on Stromboli volcano before and after the onset of the February 27th 2007 effusive eruption. Volcanic tremor has attracted considerable attention by seismologists because of its potential value as a tool for forecasting eruptions and for better understanding the physical processes that occur inside active volcanoes. Commonly used methods to locate volcanic tremor sources are: 1) array techniques, 2) semblance based methods, 3) calculation of wave field amplitude. We have choosen the third approach, using a quantitative modeling of the seismic wavefield. For this purpose, we have calculated the Green Functions (GF) in the frequency domain with the Finite Element Method (FEM). We have used this method because it is well suited to solve elliptic problems, as the elastodynamics in the Fourier domain. The volcanic tremor source is located by determining the source function over a regular grid of points. The best fit point is choosen as the tremor source location. The source inversion is performed in the frequency domain, using only the wavefield amplitudes. We illustrate the method and its validation over a synthetic dataset. We show some preliminary results on the Stromboli dataset, evidencing temporal variations of the volcanic tremor sources.
Resumo:
The diagrammatic strong-coupling perturbation theory (SCPT) for correlated electron systems is developed for intersite Coulomb interaction and for a nonorthogonal basis set. The construction is based on iterations of exact closed equations for many - electron Green functions (GFs) for Hubbard operators in terms of functional derivatives with respect to external sources. The graphs, which do not contain the contributions from the fluctuations of the local population numbers of the ion states, play a special role: a one-to-one correspondence is found between the subset of such graphs for the many - electron GFs and the complete set of Feynman graphs of weak-coupling perturbation theory (WCPT) for single-electron GFs. This fact is used for formulation of the approximation of renormalized Fermions (ARF) in which the many-electron quasi-particles behave analogously to normal Fermions. Then, by analyzing: (a) Sham's equation, which connects the self-energy and the exchange- correlation potential in density functional theory (DFT); and (b) the Galitskii and Migdal expressions for the total energy, written within WCPT and within ARF SCPT, a way we suggest a method to improve the description of the systems with correlated electrons within the local density approximation (LDA) to DFT. The formulation, in terms of renormalized Fermions LIDA (RF LDA), is obtained by introducing the spectral weights of the many electron GFs into the definitions of the charge density, the overlap matrices, effective mixing and hopping matrix elements, into existing electronic structure codes, whereas the weights themselves have to be found from an additional set of equations. Compared with LDA+U and self-interaction correction (SIC) methods, RF LDA has the advantage of taking into account the transfer of spectral weights, and, when formulated in terms of GFs, also allows for consideration of excitations and nonzero temperature. Going beyond the ARF SCPT, as well as RF LIDA, and taking into account the fluctuations of ion population numbers would require writing completely new codes for ab initio calculations. The application of RF LDA for ab initio band structure calculations for rare earth metals is presented in part 11 of this study (this issue). (c) 2005 Wiley Periodicals, Inc.
Resumo:
The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). ^ In the present work, we follow the method originally proposed by Van Wet in LRT. The Hamiltonian in this approach is of the form: H = H 0(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H0 - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H0(E, B), include the external fields without any limitation on strength. ^ In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0, t → ∞, so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. ^ In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. ^ In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices. ^
Resumo:
The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). In the present work, we follow the method originally proposed by Van Vliet in LRT. The Hamiltonian in this approach is of the form: H = H°(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H° - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H°(E, B) , include the external fields without any limitation on strength. In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0 , t → ∞ , so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices.