984 resultados para Graphene layers


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Graphene oxide-intercalated alpha-metal hydroxides were prepared using layers from the delaminated colloidal dispersions of cetyltrimethylammonium-intercalated graphene oxide and dodecylsulfate-intercalated alpha-hydroxide of nickel/cobalt as precursors. The reaction of the two dispersions leads to de-intercalation of the interlayer ions from both the layered solids and the intercalation of the negatively charged graphene oxide sheets between the positively charged layers of the alpha-hydroxide. Thermal decomposition of the intercalated solids yields graphene/nanocrystalline metal oxide composites. Electron microscopy analysis of the composites indicates that the nanoparticles are intercalated between graphene layers. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report a new method for quantitative estimation of graphene layer thicknesses using high contrast imaging of graphene films on insulating substrates with a scanning electron microscope. By detecting the attenuation of secondary electrons emitted from the substrate with an in-column low-energy electron detector, we have achieved very high thickness-dependent contrast that allows quantitative estimation of thickness up to several graphene layers. The nanometer scale spatial resolution of the electron micrographs also allows a simple structural characterization scheme for graphene, which has been applied to identify faults, wrinkles, voids, and patches of multilayer growth in large-area chemical vapor deposited graphene. We have discussed the factors, such as differential surface charging and electron beam induced current, that affect the contrast of graphene images in detail. (C) 2011 American Institute of Physics. doi:10.1063/1.3608062]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transfer free processes using Cu films greatly simplify the fabrication of reliable suspended graphene devices. In this paper, the authors report on the use of electrodeposited Cu films on Si for transfer free fabrication of suspended graphene devices. The quality of graphene layers on optimized electrodeposited Cu and Cu foil are found to be the same. By selectively etching the underlying Cu, the authors have realized by a transfer free process metal contacted, suspended graphene beams up to 50 mu m in length directly on Si. The suspended graphene beams do not show any increase in defect levels over the as grown state indicating the efficiency of the transfer free process. Measured room temperature electronic mobilities of up to 5200 cm(2)/V.s show that this simpler and CMOS compatible route has the potential to replace the foil based route for such suspended nano and micro electromechanical device arrays. (C) 2014 American Vacuum Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Towards ultrafast optoelectronic applications of single and a few layer reduced graphene oxide (RGO), we study time domain terahertz spectroscopy and optical pump induced changes in terahertz conductivity of self-supported RGO membrane in the spectral window of 0.5-3.5 THz. The real and imaginary parts of conductivity spectra clearly reveal low frequency resonances, attributed to the energy gaps due to the van Hove singularities in the density of states flanking the Dirac points arising due to the relative rotation of the graphene layers. Further, optical pump induced terahertz conductivity is positive, pointing to the dominance of intraband scattering processes. The relaxation dynamics of the photo-excited carriers consists of three cooling pathways: the faster (similar to 450 fs) one due to optical phonon emission followed by disorder mediated large momentum and large energy acoustic phonon emission with a time constant of a few ps (called the super-collision mechanism) and a very large time (similar to 100 ps) arising from the deep trap states. The frequency dependence of the dynamic conductivity at different delay times is analyzed in term of Drude-Smith model. (C) 2014 Published by Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Graphene layers have been transferred directly on to paper without any intermediate layers to yield G-paper. Resistive gas sensors have been fabricated using strips of G-paper. These sensors achieved a remarkable lower limit of detection of similar to 300 parts per trillion (ppt) for NO2, which is comparable to or better than those from other paper-based sensors. Ultraviolet exposure was found to dramatically reduce the recovery time and improve response times. G-paper sensors are also found to be robust against minor strain, which was also found to increase sensitivity. G-paper is expected to enable a simple and inexpensive low-cost flexible graphene platform

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A green electrochemical exfoliation route to produce graphene from graphite electrode has been provided. Saccharin which is a non-toxic and biocompatible artificial sweetener was used as an intercalating agent in aqueous media. Graphene samples were produced using five different exfoliation potentials. Microscopic and spectroscopic analysis confirmed the presence of few layer graphene sheets in as-exfoliated product. Important observations made were: (a) graphene layers from nano-to-micro meter sizes were produced; (b) number of graphene layers decreased with increase in the intercalation potential, (c) yield of graphene increased with increase in the exfoliation potential and (d) defect density in the exfoliated graphene layer was sensitive to the exfoliation potential in a way that with increase in the exfoliation potential the defect density initially increased and then eventually decreased.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the photoresponse of stacked graphene layers towards infrared radiation. Graphene is stacked in two configurations, namely, crossed and parallel layers. Raman analysis demonstrated a strong interaction among the stacked graphene layers. Graphene in the crossed configuration exhibited the presence of both negative and positive conductivities; however, other configurations of graphene exhibited positive conductivity only. The presence of negative photoconductivity is proposed to be due to oxygen or oxygen-related functional group absorbents that are trapped in between two monolayers of graphene and act as scattering centers for free carriers. An interesting trend is reported in differential conductivity when stacked layers are compared with multilayers and parallel-stacked graphene layers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microwave plasma driven chemical vapour deposition was used to synthesize graphene nanosheets from a mixture of acetylene and hydrogen gas molecules. In this plasma, acetylene decomposes to carbon atoms that form nanostructures in the outlet plasma stream and get deposited on the substrate. The GNS consists of a few layers of graphene aligned vertically to the substrate. Graphene layers have been confirmed by high-resolution transmission electron microscopy, and Raman spectral studies were conducted to observe the defective nature of the sample. The growth of nanosheets in a vertical direction is assumed to be due to the effect of electric field and from the difference in the deposition rate in the axial and parallel directions. These vertical graphene sheets are attractive for various applications in energy storage and sensors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A fundamental study of visible diffraction effects from patterned graphene layers is presented. By patterning graphene into optical gratings, visible diffraction from graphene is experimentally measured as a function of the number of layers and visible wavelengths. A practical application of these effects is also presented, by demonstrating an optical hologram based on graphene. A high resolution (pixel size 400 nm) intensity hologram is fabricated which, in response to incident laser light, generates a visible image. These findings suggest that visible diffraction in graphene can find practical application in holograms and should also be considered during the design and characterisation of graphene-based optical applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The symmetry group analysis is applied to classify the phonon modes of N-stacked graphene layers (NSGLs) with AB and AA stacking, particularly their infrared and Raman properties. The dispersions of various phonon modes are calculated in a multilayer vibrational model, which is generalized from the lattice vibrational potentials of graphene to including the interlayer interactions in NSGLs. The experimentally reported redshift phenomena in the layer-number dependence of the intralayer optical C-C stretching mode frequencies are interpreted. An interesting low-frequency interlayer optical mode is revealed to be Raman or infrared active in even or odd NSGLs, respectively. Its frequency shift is sensitive to the layer number and saturated at about 10 layers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate theoretically the light reflectance of a graphene layer prepared on the top of one-dimensional Si/SiO2 photonic crystal (1DPC). It is shown that the visibility of the graphene layers is enhanced greatly when 1DPC is added, and the visibility can be tuned by changing the incident angle and light wavelengths. This phenomenon is caused by the absorption of the graphene layer and the enhanced reflectance of the 1DPC. (C) 2007 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Roughness and defects induced on few-layer graphene (FLG) irradiated by Ar+ ions at different energies were investigated using X-ray photoemission spectroscopy (XPS) and atomic force microscopy techniques. The results provide direct experimental evidence of ripple formation, sp2 to sp3 hybridized carbon transformation, electronic damage, Ar+ implantation, unusual defects and edge reconstructions in FLG, which depend on the irradiation energy. In addition, shadowing effects similar to those found in oblique-angle growth of thin films were seen. Reliable quantification of the transition from the sp2-bonding to sp3-hybridized state as a result of Ar+ ion irradiation is achieved from the deconvolution of the XPS C (1s) peak. Although the ion irradiation effect is demonstrated through the shape of the derivative of the Auger transition C KVV spectra, we show that the D parameter values obtained from these spectra which are normally used in the literature fail to account for the sp2 to sp3 hybridization transition. In contrast to what is known, it is revealed that using ion irradiation at large FLG sample tilt angles can lead to edge reconstructions. Furthermore, FLG irradiation by low energy of 0.25 keV can be a plausible way of peeling graphene layers without the need of Joule heating reported previously

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The adsorption of Lennard-Jones fluids (argon and nitrogen) onto a graphitized thermal carbon black surface was studied with a Grand Canonical Monte Carlo Simulation (GCMC). The surface was assumed to be finite in length and composed of three graphene layers. When the GCMC simulation was used to describe adsorption on a graphite surface, an over-prediction of the isotherm was consistently observed in the pressure regions where the first and second layers are formed. To remove this over-prediction, surface mediation was accounted for to reduce the fluid-fluid interaction. Do and co-workers have introduced the so-called surface-mediation damping factor to correct the over-prediction for the case of a graphite surface of infinite extent, and this approach has yielded a good description of the adsorption isotherm. In this paper, the effects of the finite size of the graphene layer on the adsorption isotherm and how these would affect the extent of the surface mediation were studied. It was found that this finite-surface model provides a better description of the experimental data for graphitized thermal carbon black of high surface area (i.e. small crystallite size) while the infinite- surface model describes data for carbon black of very low surface area (i.e. large crystallite size).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbon films were energetically deposited onto copper and nickel foil using a filtered cathodic vacuum arc deposition system. Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–visible spectroscopy showed that graphene films of uniform thickness with up to 10 layers can be deposited onto copper foil at moderate temperatures of 750 C. The resulting films, which can be prepared at high deposition rates, were comparable to graphene films grown at 1050 C using chemical vapour deposition (CVD). This difference in growth temperature is attributed to dynamic annealing which occurs as the film grows from the energetic carbon flux. In the case of nickel substrates, it was found that graphene films can also be prepared at moderate substrate temperatures. However much higher carbon doses were required, indicating that the growth mode differs between substrates as observed in CVD grown graphene. The films deposited onto nickel were also highly non uniform in thickness, indicating that the grain structure of the nickel substrate influenced the growth of graphene layers

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Doping is an effective approach that allows for the intrinsic modification of the electrical and chemical properties of nanomaterials. Recently, a graphene and carbon nanotube hybrid structure (GNHS) has been reported, which extends the excellent properties of carbon-based materials to three dimensions. In this paper, we carried out a first-time investigation on the tensile properties of the hybrid structures with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young’s modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young’s modulus or yield strength could be observed. For all considered samples, the failure is found to initiate at the region where the nanotubes and graphene sheets are connected. After failure, monatomic chains are normally observed around the failure region. Dangling graphene layers without the separation of a residual CNT wall are found to adhere to each other after failure with a distance of about 3.4 Å. This study provides a fundamental understanding of the tensile properties of the doped graphene–nanotube hybrid structures, which will benefit the design and also the applications of graphene-based hybrid materials.