973 resultados para Gradient Descent method


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a novel filtering method for multispectral satellite image classification. The proposed method learns a set of spatial filters that maximize class separability of binary support vector machine (SVM) through a gradient descent approach. Regularization issues are discussed in detail and a Frobenius-norm regularization is proposed to efficiently exclude uninformative filters coefficients. Experiments carried out on multiclass one-against-all classification and target detection show the capabilities of the learned spatial filters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract : This work is concerned with the development and application of novel unsupervised learning methods, having in mind two target applications: the analysis of forensic case data and the classification of remote sensing images. First, a method based on a symbolic optimization of the inter-sample distance measure is proposed to improve the flexibility of spectral clustering algorithms, and applied to the problem of forensic case data. This distance is optimized using a loss function related to the preservation of neighborhood structure between the input space and the space of principal components, and solutions are found using genetic programming. Results are compared to a variety of state-of--the-art clustering algorithms. Subsequently, a new large-scale clustering method based on a joint optimization of feature extraction and classification is proposed and applied to various databases, including two hyperspectral remote sensing images. The algorithm makes uses of a functional model (e.g., a neural network) for clustering which is trained by stochastic gradient descent. Results indicate that such a technique can easily scale to huge databases, can avoid the so-called out-of-sample problem, and can compete with or even outperform existing clustering algorithms on both artificial data and real remote sensing images. This is verified on small databases as well as very large problems. Résumé : Ce travail de recherche porte sur le développement et l'application de méthodes d'apprentissage dites non supervisées. Les applications visées par ces méthodes sont l'analyse de données forensiques et la classification d'images hyperspectrales en télédétection. Dans un premier temps, une méthodologie de classification non supervisée fondée sur l'optimisation symbolique d'une mesure de distance inter-échantillons est proposée. Cette mesure est obtenue en optimisant une fonction de coût reliée à la préservation de la structure de voisinage d'un point entre l'espace des variables initiales et l'espace des composantes principales. Cette méthode est appliquée à l'analyse de données forensiques et comparée à un éventail de méthodes déjà existantes. En second lieu, une méthode fondée sur une optimisation conjointe des tâches de sélection de variables et de classification est implémentée dans un réseau de neurones et appliquée à diverses bases de données, dont deux images hyperspectrales. Le réseau de neurones est entraîné à l'aide d'un algorithme de gradient stochastique, ce qui rend cette technique applicable à des images de très haute résolution. Les résultats de l'application de cette dernière montrent que l'utilisation d'une telle technique permet de classifier de très grandes bases de données sans difficulté et donne des résultats avantageusement comparables aux méthodes existantes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metaheuristic methods have become increasingly popular approaches in solving global optimization problems. From a practical viewpoint, it is often desirable to perform multimodal optimization which, enables the search of more than one optimal solution to the task at hand. Population-based metaheuristic methods offer a natural basis for multimodal optimization. The topic has received increasing interest especially in the evolutionary computation community. Several niching approaches have been suggested to allow multimodal optimization using evolutionary algorithms. Most global optimization approaches, including metaheuristics, contain global and local search phases. The requirement to locate several optima sets additional requirements for the design of algorithms to be effective in both respects in the context of multimodal optimization. In this thesis, several different multimodal optimization algorithms are studied in regard to how their implementation in the global and local search phases affect their performance in different problems. The study concentrates especially on variations of the Differential Evolution algorithm and their capabilities in multimodal optimization. To separate the global and local search search phases, three multimodal optimization algorithms are proposed, two of which hybridize the Differential Evolution with a local search method. As the theoretical background behind the operation of metaheuristics is not generally thoroughly understood, the research relies heavily on experimental studies in finding out the properties of different approaches. To achieve reliable experimental information, the experimental environment must be carefully chosen to contain appropriate and adequately varying problems. The available selection of multimodal test problems is, however, rather limited, and no general framework exists. As a part of this thesis, such a framework for generating tunable test functions for evaluating different methods of multimodal optimization experimentally is provided and used for testing the algorithms. The results demonstrate that an efficient local phase is essential for creating efficient multimodal optimization algorithms. Adding a suitable global phase has the potential to boost the performance significantly, but the weak local phase may invalidate the advantages gained from the global phase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Affiliation: Claudia Kleinman, Nicolas Rodrigue & Hervé Philippe : Département de biochimie, Faculté de médecine, Université de Montréal

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe a method for modeling object classes (such as faces) using 2D example images and an algorithm for matching a model to a novel image. The object class models are "learned'' from example images that we call prototypes. In addition to the images, the pixelwise correspondences between a reference prototype and each of the other prototypes must also be provided. Thus a model consists of a linear combination of prototypical shapes and textures. A stochastic gradient descent algorithm is used to match a model to a novel image by minimizing the error between the model and the novel image. Example models are shown as well as example matches to novel images. The robustness of the matching algorithm is also evaluated. The technique can be used for a number of applications including the computation of correspondence between novel images of a certain known class, object recognition, image synthesis and image compression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Evolutionary synthesis methods, as originally described by Dobrowolski, have been shown in previous literature to be an effective method of obtaining anti-reflection coating designs. To make this method even more effective, the combination of a good starting design, the best suited thin-film materials, a realistic optimization target function and a non-gradient optimization method are used in an algorithm written for a PC. Several broadband anti-reflection designs obtained by this new design method are given as examples of its usefulness.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In cooperative communication networks, owing to the nodes' arbitrary geographical locations and individual oscillators, the system is fundamentally asynchronous. Such a timing mismatch may cause rank deficiency of the conventional space-time codes and, thus, performance degradation. One efficient way to overcome such an issue is the delay-tolerant space-time codes (DT-STCs). The existing DT-STCs are designed assuming that the transmitter has no knowledge about the channels. In this paper, we show how the performance of DT-STCs can be improved by utilizing some feedback information. A general framework for designing DT-STC with limited feedback is first proposed, allowing for flexible system parameters such as the number of transmit/receive antennas, modulated symbols, and the length of codewords. Then, a new design method is proposed by combining Lloyd's algorithm and the stochastic gradient-descent algorithm to obtain optimal codebook of STCs, particularly for systems with linear minimum-mean-square-error receiver. Finally, simulation results confirm the performance of the newly designed DT-STCs with limited feedback.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A smoother introduced earlier by van Leeuwen and Evensen is applied to a problem in which real obser vations are used in an area with strongly nonlinear dynamics. The derivation is new , but it resembles an earlier derivation by van Leeuwen and Evensen. Again a Bayesian view is taken in which the prior probability density of the model and the probability density of the obser vations are combined to for m a posterior density . The mean and the covariance of this density give the variance-minimizing model evolution and its errors. The assumption is made that the prior probability density is a Gaussian, leading to a linear update equation. Critical evaluation shows when the assumption is justified. This also sheds light on why Kalman filters, in which the same ap- proximation is made, work for nonlinear models. By reference to the derivation, the impact of model and obser vational biases on the equations is discussed, and it is shown that Bayes’ s for mulation can still be used. A practical advantage of the ensemble smoother is that no adjoint equations have to be integrated and that error estimates are easily obtained. The present application shows that for process studies a smoother will give superior results compared to a filter , not only owing to the smooth transitions at obser vation points, but also because the origin of features can be followed back in time. Also its preference over a strong-constraint method is highlighted. Further more, it is argued that the proposed smoother is more efficient than gradient descent methods or than the representer method when error estimates are taken into account

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Continuous-time neural networks for solving convex nonlinear unconstrained;programming problems without using gradient information of the objective function are proposed and analyzed. Thus, the proposed networks are nonderivative optimizers. First, networks for optimizing objective functions of one variable are discussed. Then, an existing one-dimensional optimizer is analyzed, and a new line search optimizer is proposed. It is shown that the proposed optimizer network is robust in the sense that it has disturbance rejection property. The network can be implemented easily in hardware using standard circuit elements. The one-dimensional net is used as a building block in multidimensional networks for optimizing objective functions of several variables. The multidimensional nets implement a continuous version of the coordinate descent method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The progression of diabetes and the challenge of daily tasks may result in changes in biomechanical strategies. Descending stairs is a common task that patients have to deal with, however it still has not been properly studied in this population. Objectives: We describe and compare the net joint moments and kinematics of the lower limbs in diabetic individuals with and without peripheral neuropathy and healthy controls during stair descent. Method: Forty-two adults were assessed: control group (13), diabetic group (14), and neuropathic diabetic group (15). The flexor and extensor net moment peaks and joint angles of the hip, knee, and ankle were described and compared in terms of effect size and ANOVAs (p<0.05). Results: Both diabetic groups presented greater dorsiflexion [large effect size] and a smaller hip extensor moment [large effect size] in the weight acceptance phase. In the propulsion phase, diabetics with and without neuropathy showed a greater hip flexor moment [large effect size] and smaller ankle extension [large effect size]. Conclusion: Diabetic patients, even without neuropathy, revealed poor eccentric control in the weight acceptance phase, and in the propulsion phase, they showed a different hip strategy, where they chose to take the leg off the ground using more flexion torque at the hip instead of using a proper ankle extension function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel microfluidic method is proposed for studying diffusion of small molecules in a hydrogel. Microfluidic devices were prepared with semi-permeable microchannels defined by crosslinked poly(ethylene glycol) (PEG). Uptake of dye molecules from aqueous solutions flowing through the microchannels was observedoptically and diffusion of the dye into the hydrogel was quantified. To complement the diffusion measurements from the microfluidic studies, nuclear magnetic resonance(NMR) characterization of the diffusion of dye in the PEG hydrogels was performed. The diffusion of small molecules in a hydrogel is relevant to applications such asdrug delivery and modeling transport for tissue-engineering applications. The diffusion of small molecules in a hydrogel is dependent on the extent of crosslinking within the gel, gel structure, and interactions between the diffusive species and the hydrogel network. These effects were studied in a model environment (semi-infinite slab) at the hydrogelfluid boundary in a microfluidic device. The microfluidic devices containing PEG microchannels were fabricated using photolithography. The unsteady diffusion of small molecules (dyes) within the microfluidic device was monitored and recorded using a digital microscope. The information was analyzed with techniques drawn from digital microscopy and image analysis to obtain concentration profiles with time. Using a diffusion model to fit this concentration vs. position data, a diffusion coefficient was obtained. This diffusion coefficient was compared to those from complementary NMR analysis. A pulsed field gradient (PFG) method was used to investigate and quantify small molecule diffusion in gradient (PFG) method was used to investigate and quantify small molecule diffusion in hydrogels. There is good agreement between the diffusion coefficients obtained from the microfluidic methods and those found from the NMR studies. The microfluidic approachused in this research enables the study of diffusion at length scales that approach those of vasculature, facilitating models for studying drug elution from hydrogels in blood-contacting applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Se presenta un nuevo método de diseño conceptual en Ingeniería Aeronáutica basado el uso de modelos reducidos, también llamados modelos sustitutos (‘surrogates’). Los ingredientes de la función objetivo se calculan para cada indiviudo mediante la utilización de modelos sustitutos asociados a las distintas disciplinas técnicas que se construyen mediante definiciones de descomposición en valores singulares de alto orden (HOSVD) e interpolaciones unidimensionales. Estos modelos sustitutos se obtienen a partir de un número limitado de cálculos CFD. Los modelos sustitutos pueden combinarse, bien con un método de optimización global de tipo algoritmo genético, o con un método local de tipo gradiente. El método resultate es flexible a la par que mucho más eficiente, computacionalmente hablando, que los modelos convencionales basados en el cálculo directo de la función objetivo, especialmente si aparecen un gran número de parámetros de diseño y/o de modelado. El método se ilustra considerando una versión simplificada del diseño conceptual de un avión. Abstract An optimization method for conceptual design in Aeronautics is presented that is based on the use of surrogate models. The various ingredients in the target function are calculated for each individual using surrogates of the associated technical disciplines that are constructed via high order singular value decomposition and one dimensional interpolation. These surrogates result from a limited number of CFD calculated snapshots. The surrogates are combined with an optimization method, which can be either a global optimization method such as a genetic algorithm or a local optimization method, such as a gradient-like method. The resulting method is both flexible and much more computationally efficient than the conventional method based on direct calculation of the target function, especially if a large number of free design parameters and/or tunablemodeling parameters are present. The method is illustrated considering a simplified version of the conceptual design of an aircraft empennage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An adaptive back-propagation algorithm is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, both numerical studies and a rigorous analysis show that the adaptive back-propagation method results in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a framework for calculating globally optimal parameters, within a given time frame, for on-line learning in multilayer neural networks. We demonstrate the capability of this method by computing optimal learning rates in typical learning scenarios. A similar treatment allows one to determine the relevance of related training algorithms based on modifications to the basic gradient descent rule as well as to compare different training methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An analytic investigation of the average case learning and generalization properties of Radial Basis Function Networks (RBFs) is presented, utilising on-line gradient descent as the learning rule. The analytic method employed allows both the calculation of generalization error and the examination of the internal dynamics of the network. The generalization error and internal dynamics are then used to examine the role of the learning rate and the specialization of the hidden units, which gives insight into decreasing the time required for training. The realizable and over-realizable cases are studied in detail; the phase of learning in which the hidden units are unspecialized (symmetric phase) and the phase in which asymptotic convergence occurs are analyzed, and their typical properties found. Finally, simulations are performed which strongly confirm the analytic results.