143 resultados para Gneisses
Resumo:
In Finland, peat harvesting sites are utilized down almost to the mineral soil. In this situation the properties of mineral subsoil are likely to have considerable influence on the suitability for the various after-use forms. The aims of this study were to recognize the chemical and physical properties of mineral subsoils possibly limiting the after-use of cut-over peatlands, to define a minimum practice for mineral subsoil studies and to describe the role of different geological areas. The future percentages of the different after-use forms were predicted, which made it possible to predict also carbon accumulation in this future situation. Mineral subsoils of 54 different peat production areas were studied. Their general features and grain size distribution was analysed. Other general items studied were pH, electrical conductivity, organic matter, water soluble nutrients (P, NO3-N, NH4-N, S and Fe) and exchangeable nutrients (Ca, Mg and K). In some cases also other elements were analysed. In an additional case study carbon accumulation effectiveness before the intervention was evaluated on three sites in Oulu area (representing sites typically considered for peat production). Areas with relatively sulphur rich mineral subsoil and pool-forming areas with very fine and compact mineral subsoil together covered approximately 1/5 of all areas. These areas were unsuitable for commercial use. They were recommended for example for mire regeneration. Another approximate 1/5 of the areas included very coarse or very fine sediments. Commercial use of these areas would demand special techniques - like using the remaining peat layer for compensating properties missing from the mineral subsoil. One after-use form was seldom suitable for one whole released peat production area. Three typical distribution patterns (models) of different mineral subsoils within individual peatlands were found. 57 % of studied cut-over peatlands were well suited for forestry. In a conservative calculation 26% of the areas were clearly suitable for agriculture, horticulture or energy crop production. If till without large boulders was included, the percentage of areas suitable to field crop production would be 42 %. 9-14 % of all areas were well suitable for mire regeneration or bird sanctuaries, but all areas were considered possible for mire regeneration with correct techniques. Also another 11 % was recommended for mire regeneration to avoid disturbing the mineral subsoil, so total 20-25 % of the areas would be used for rewetting. High sulphur concentrations and acidity were typical to the areas below the highest shoreline of the ancient Litorina sea and Lake Ladoga Bothnian Bay zone. Also differences related to nutrition were detected. In coarse sediments natural nutrient concentration was clearly higher in Lake Ladoga Bothnian Bay zone and in the areas of Svecokarelian schists and gneisses, than in Granitoid area of central Finland and in Archaean gneiss areas. Based on this study the recommended minimum analysis for after-use planning was for pH, sulphur content and fine material (<0.06 mm) percentage. Nutrition capacity could be analysed using the natural concentrations of calcium, magnesium and potassium. Carbon accumulation scenarios were developed based on the land-use predictions. These scenarios were calculated for areas in peat production and the areas released from peat production (59300 ha + 15 671 ha). Carbon accumulation of the scenarios varied between 0.074 and 0.152 million t C a-1. In the three peatlands considered for peat production the long term carbon accumulation rates varied between 13 and 24 g C m-2 a-1. The natural annual carbon accumulation had been decreasing towards the time of possible intervention.
Resumo:
This paper presents a numerical simulation of the well-documented, fluid-controlled Kabbal and Ponmudi type gneiss-chamockite transformations in southern India using a free energy minimization method. The computations have considered all the major solid phases and important fluid species in the rock - C-O-H and rock - C-O-H-N systems. Appropriate activity-composition relations for the solid solutions and equations of state for the fluids have been included in order to evaluate the mineral-fluid equilibria attending the incipient chamockite development in the gneisses. The C-O-H fluid speciation pattern in both the Kabbal and Ponmudi type systems indicates that CO2 and H2O make up the bulk of the fluid phase with CO, CH4, H-2 and O2 as minor constituents. In the graphite-buffered Ponmudi-system, the abundance of CO, CH4 and H-2 is orders of magnitude higher than that in the graphite-free Kabbal system. Simulation with C-O-H-N fluids of varying composition demonstrates the complementary role of CO2 and N2 as rather inert dilutants of H2O in the fluid phase. The simulation, carried out on available whole-rock data, has demonstrated the dependence of the transformation X(H2O) on P,T, and phase and chemical composition of the precursor gneiss.
Resumo:
The structural state of K-feldspars in the quartzofeldspathic gneisses, charnockites, metapelites and pegmatites from the southern Kamataka, northern Tamil Nadu and southern Kerala high-grade regions of southern India has been characterized using petrographic and powder X-ray diffraction methods. The observed distribution pattern of structural state with a preponderance of disordered K-feldspar polymorphs in granulites compared to the ordered microclines in the amphibolite facies rocks is interpreted to reflect principally the varying H2O contents in the metamorphic-metasomatic fluids across metamorphic grade. The K-feldspars in the pegmatites of granitic derivation and in a pegmatite of inferred metamorphic origin also point to the important role of aqueous fluids in their structural state.
Resumo:
We report detailed evidence for a new paleo-suture zone (the Kumta suture) on the western margin of southern India. The c. 15-km-wide, westward dipping suture zone contains garnet-biotite, fuchsite-haematite, chlorite-quartz, quartz-phengite schists, biotite augen gneiss, marble and amphibolite. The isochemical phase diagram estimations and the high-Si phengite composition of quartz-phengite schist suggest a near-peak condition of c. 18 kbar at c. 550 degrees C, followed by near-isothermal decompression. The detrital SHRIMP U-Pb zircon ages from quartz-phengite schist give four age populations ranging from 3280 to 2993 Ma. Phengite from quartz-phengite schist and biotite from garnet-biotite schist have K-Ar metamorphic ages of ca. 1326 and ca. 1385 Ma respectively. Electron microprobe-CHIME ages of in situ zircons in quartz-phengite schist (ca. 3750 Ma and ca. 1697 Ma) are consistent with the above results. The Bondla ultramafic-gabbro complex in the west of the Kumta suture compositionally represents an arc with K-Ar biotite ages from gabbro in the range 1644-1536 Ma. On the eastern side of the suture are weakly deformed and unmetamorphosed shallow westward-dipping sedimentary rocks of the Sirsi shelf, which has the following upward stratigraphy: pebbly quartzite/sandstone, turbidite, magnetite iron formation, and limestone; farther east the lower lying quartzite has an unconformable contact with ca. 2571 Ma quartzo-feldspathic gneisses of the Dharwar block with a ca. 1733 Ma biotite cooling age. To the west of the suture is a c. 60-km-wide Karwar block mainly consisting of tonalite-trondhjemite-granodiorite (TTG) and amphibolite. The TTGs have U-Pb zircon magmatic ages of ca. 3200 Ma with a rare inherited core age of ca. 3601 Ma. The K-Ar biotite cooling age from the TTGs (1746 Ma and 1796 Ma) and amphibolite (ca. 1697 Ma) represents late-stage uplift. Integration of geological, structural and geochronological data from western India and eastern Madagascar suggest diachronous ocean closure during the amalgamation of Rodinia; in the north at around ca. 1380 Ma, and a progression toward the south until ca. 750 Ma. Satellite imagery based regional structural lineaments suggests that the Betsimisaraka suture continues into western India as the Kumta suture and possibly farther south toward a suture in the Coorg area, representing in total a c. 1000 km long Rodinian suture. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The formation and growth of continental crust in the Archean have been evaluated through models of subduction-accretion and mantle plume. The Nilgiri Block in southern India exposes exhumed Neoarchean lower crust, uplifted to heights of 2500 m above sea level along the north western margin of the Peninsula. Major lithologies in this block include charnockite with or without garnet, anorthosite-gabbro suite, pyroxenite, amphibolite and hornblende-biotite gneiss (TTG). All these rock types are closely associated as an arc magmatic suite, with diffuse boundaries and coeval nature. The charnockite and hornblende-biotite gneisses (TTG) show SiO2 content varying from 64 to 73 wt.%. The hornblende-biotite gneisses (TTG) are high-Al type with Al2O3 >15 wt.% whereas the charnockites show Al2O3 <15 wt.%. The composition of charnockite is mainly magnesian and calcic to calc-alkaline. The mafic-ultramafic rocks show composition close to that of tholeiitic series. The low values of K(2)o (<3 wt.%), (K/Rb)/K2O (<500), Zr/Ti, and trace element ratios like (La/Yb)n/(Sr/Y), (Y/Nb), (Y + Nb)/Rb, (Y+Ta)/Rb, Yb/Ta indicate a volcanic arc signature for these rocks. The geochemical signature is consistent with arc magmatic rocks generated through oceanic plate subduction. The primitive mantle normalized trace element patterns of these rocks display enrichment in large ion lithophile elements (LILE) and comparable high field strength elements (HFSE) in charnockite and hornblende-biotite gneisses (TTG) consistent with subduction-related origin. Primitive mantle normalized REE pattern displays an enrichment in LREE in the chamockite and hornblende-biotite gneisses (TTG) as compared to a flat pattern for the mafic rocks. The chondrite normalized REE patterns of zircons of all the rock types reveal cores with high HREE formed at ca. 2700 Ma and rims with low HREE formed at 2500-2450 Ma. Log-transformed La/Th-Nb/Th-Sm/Th-Yb/Th discrimination diagram for the mafic and ultramafic rocks from Nilgiri displays a transition from mid-oceanic ridge basalt (MORB) to island arc basalt (IAB) suggesting a MORB source. The U-Pb zircon data from the charnockites, mafic granulites and hornblende-biotite gneisses (TTG) presented in our study show that the magma generation during subduction and accretion events in this block occurred at 2700-2500 Ma. Together with the recent report on Neoarchean supra-subduction zone ophiolite suite at its southern margin, the Nilgiri Block provides one of the best examples for continental growth through vertical stacking and lateral accretion in a subduction environment during the Neoarchean. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
The Nilgiri Block, southern India is an exhumed lower crust formed through arc magmatic processes in the Neoarchean. The main lithologies in this terrane include charnockites, gneisses, volcanic tuff, metasediments, banded iron formation and mafic-ultramafic bodies. Mafic-ultramafic rocks are present towards the northern and central part of the Nilgiri Block. We examine the evolution of these mafic granulites/metagabbros by phase diagram modeling and U-Pb sensitive high resolution ion microprobe (SHRIMP) dating. They consist of a garnet-clinopyroxene-plagioclase-hornblende-ilmenite +/- orthopyroxene +/- rutile assemblage. Garnet and clinopyroxene form major constituents with labradorite and orthopyroxene as the main mineral inclusions. Labradorite, identified using Raman analysis, shows typical peaks at 508 cm(-1), 479 cm(-1), 287 cm(-1) and 177 cm(-1). It is stable along with orthopyroxene towards the low-pressure high-temperature region of the granulite fades (M1 stage). Subsequently, orthopyroxene reacted with plagioclase to form the peak garnet + clinopyroxene + rutile assemblage (M2 stage). The final stage is represented by amphibolite facies-hornblende and plagioclase-rim around the garnet-clinopyroxene assemblage (M3 stage). Phase diagram modeling shows that these mafic granulites followed an anticlockwise P-T-t path during their evolution. The initial high-temperature metamorphism (M1 stage) was at 850-900 degrees C and similar to 9 kbar followed by high-pressure granulite fades metamorphism (M2 stage) at 850-900 degrees C and 14-15 kbar. U-Pb isotope studies of zircons using SHRIMP revealed late Neoarchean to early paleoproterozoic ages of crystallization and metamorphism respectively. The age data shows that these mafic granulites have undergone arc magmatism at ca. 25392 +/- 3 Ma and high-temperature, high-pressure metamorphism at ca. 2458.9 +/- 8.6 Ma. Thus our results suggests a late Neoarchean arc magmatism followed by early paleoproterozoic high-temperature, high-pressure granulite facies metamorphism due to the crustal thickening and suturing of the Nilgiri Block onto the Dharwar Craton. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Apesar da grande quantidade de estudos geoquímicos e geocronológicos que têm sido executados no enxame de diques de Ponta Grossa (EDPG), pouco se sabe a respeito da tectônica associada ao seu sin e pós emplacement. O objetivo desse estudo é identificar nos diques possíveis indicadores cinemáticos a fim de compreender essa dinâmica, além de caracterizar a tectônica rúptil Meso-cenozóica associada à área, afetando todas as rochas. A área de estudo está situada no entorno da Baía de Paranaguá, estado do Paraná, onde os diques do EDPG afloram intrudindo domínios pré-cambrianos, compostos por gnaisses, sequências metassedimentares e suítes graníticas pertencentes ao Terreno Paranaguá e uma pequena parte às Microplacas Curitiba e Luís Alves, ambos em contato através de Zonas de cisalhamento (SIGA JR, 1995). Essas rochas possuem direção de foliação marcante NE-SW. Os diques estudados foram divididos em dois grupos com base em estudos petrográficos, com forte predomínio dos básicos toleíticos e subordinadamente, os básicos alcalinos. Alguns diques compostos também foram encontrados, o que demonstra ao menos dois pulsos magmáticos possivelmente associados ao mesmo evento. São diques verticais a subverticais e possuem direção principal NW-SE. Com frequência apresentam fraturamento interno de direção NE-SW, provavelmente associados ao seu processo de resfriamento. Possuem formato tabular, porém não é raro que ocorram irregulares. As principais feições indicativas de movimentação oblíqua na intrusão desses diques são as estruturas de borda em degraus, tocos e zigue-zague, que demonstram em geral uma componente distensional destral de deslocamento. Agregando dados dos demais enxames de diques toleíticos principais, chegou-se a um valor médio de N80E para o tensor σ3 da abertura do Atlântico Sul, coerente com o esperado também para EDPG, visto que foram intrudidos em um ambiente transtensivo (CORREA GOMES, 1996). Falhas e fraturas são observadas cortando tanto as rochas encaixantes quanto os diques, caracterizando uma tectônica posterior à intrusão. As principais famílias de fraturas são N20-30E, N30-40W, N80W e N60-70E, formando zonas preferenciais de erosão no cruzamento entre elas. As falhas podem apresentar plano de falha bem definido com estrias e ressaltos, ocorrendo preenchidas ou não, tendo sido observados preenchimento de sílica e material carbonático. Predomina nas falhas observadas, cinemática sinistral demonstrando mudança no campo de esforços com relação ao emplacement dos diques. O estudo da tectônica rúptil assim como do emplacement dos diques da área vem a contribuir para o melhor entendimento dos processos de abertura do Oceano Atlântico Sul, além de abranger a região emersa do que constitui o embasamento da bacia de Santos, foco de extensivos estudos atualmente, podendo-se inferir que os mesmos processos tenham afetado a região offshore.
Resumo:
A formação ferrífera do Serrote do Breu e de Alto das Pedras localiza-se no município de Campo Grande, Estado de Alagoas e está sendo pesquisada quanto ao seu potencial como minério de ferro. Ela está inserida em um domo de embasamento arqueano no interior da Faixa Sergipana, o Domo de Jirau de Ponciano. A área de estudo é caracterizada por dois altos topográficos denominados Serrote do Breu e Alto das Pedras, sustentados pela formação ferrífera, e que representam flancos opostos de um sinformal inclinado, com direção N60W e forte mergulho para sul, e extensão total de aproximadamente 2 km. A formação ferrífera ocorre em diversas camadas intercaladas em gnaisses quartzo-feldspáticos e em rochas metamáficas. Os primeiros foram agrupados na unidade de gnaisses quartzo-feldspáticos e as últimas na suíte intrusiva máfica-ultramáfica. Na porção interior do sinformal estão quartzitos e paragnaisses agrupados na unidade metassedimentar e cortando essas unidades há uma unidade de pegmatitos. A formação ferrífera é constituída por quartzo, hematita, anfibólio e magnetita. O anfibólio é em geral cummingtonita, mas riebeckita também ocorre subordinadamente. Os teores médios de SiO2, e Fe2O3t são 43,1% e 50,7%, respectivamente, e, assim como os demais elementos maiores, são compatíveis com outras formações ferríferas do mundo. Com base na petrografia e geoquímica de elementos terras raras os gnaisses quartzo-feldspáticos foram divididos em gnaisses bandados e gnaisses com titanita. Ambos apresentam composição riolítica e trend calcio-alcalino. Já as rochas metamáficas e metaultramáficas apresentam composição basáltica a andesítica e trend toleítico completamente dissociado daquele dos gnaisses. Acredita-se que os gnaisses quartzo-feldspáticos e as rochas metamáficas e metaultramáficas tenham se formado em ambientes tectônicos totalmente distintos, com as últimas tendo se formado provavelmente intrusivas nos primeiros.
Resumo:
Many garnet peridotite bodies are enclosed in ultrahigh-pressure (UHP) gneisses and/or migmatites in worldwide UHP terranes formed by subduction of continental crust. On the basis of petrochemical data, a group of garnet peridotites have been derived from depleted mantle and were subsequently metasomatized by melts and/or fluids derived from the subducted continental crust. However, their depletion and enrichment processes and tectonic evolutions are still in conflicts. New evidences for metamorphism of garnet lherzolite from Zhimafang, Donghai County, Sulu UHP terrane are reported. The garnet lherzolite have experienced a prolonged multistage metamorphic history. At least seven stages of recrystallization have been identified based on detailed analysis of reaction textures and mineral compositions. Stage I was a high-pressure and high-temperature enriched garnet lherzolite stage, which is inferred from the presence of high Ca-Cr core of garnet porphyroclast and inclusions of high-Mg clinopyroxene, high-Al-Cr orthopyroxene and high-Mg olivine. Stage II is a high-temperature and low-pressure depleted spinel-hurzbergite or spinel-dunite stage, as indicated by the presence of relict Al-rich spinel, very high-Mg and low-Ni olivine and high-Mg orthopyroxene included in the low-Cr mantle of the porphyroclastic garnet and core of fine-grained neoblastic garnet, clinopyroxene is absent in this stage. Stage III is an hydrous amphibole spinel-lherzolite stage, which recorded events of cooling and metasomatic re-enrichment, this stage is manifested by metasomatic origin of amphibole and phlogopite-bearing porphyroblastic clinopyroxene, and porphyroblastic orthopyroxene. Stage IV is a high-pressure amphibole garnet-lherzolite stage, which is indicated by the formation of low-Cr mantle of the porphyroclastic garnet and amphibole-bearing low-Cr core of neoblastic garnet. Stage V is an UHP metamorphic garnet-lherzolite stage, which is characterized by the formation of high-Cr rim of both porphyroclastic and neoblastic garnet and recrystallization of olivine, clinopyroxene and orthopyroxene in the matrix. During UHP metamorphism, the garnet lherzolite is dehydrated, hornblende decomposed to clinopyroxene and olivine. Stage VI is a high-pressure decompression amphibole garnet-lherzolite stage, indicated by formation of later coarse-grained pargasitic hornblende and phlogopite in the garnet stability field. Stage VII is a low-pressure decompression amphibole-chlorite spinel-lherzolite stage, indicated by replacement of garnet by kelyphite of high-Al orthopyroxene + aluminous spinel + tremolitic amphibole + chlorite + talc. The metamorphic evolutions of Zhimafang garnet lherzolite suggest that it displays progressive mantle wedge convection during the subduction of previous oceanic and subsequent continental slab. We propose that the Zhimafang garnet lherzolite were originated from enriched deep mantle wedge above the previously subducted oceanic slab, subduction of oceanic slab resulted in their convection to shallower back arc and sub-arc setting, decompressional melting transformed the enriched garnet-lherzolite to depleted spinel-hurzbergite or spinel-dunite, the spinel-hurzbergite or spinel dunite was then convected to the hydrous mantle wedge corner driven by corner flow and was cooled and metasomatized by slab-derived melts/fluids, and was transformed to enriched lherzolite. The lherzolites formed a downward mantle wedge layer above successively subducted continental crust. The peridotite subducted together with the underlying continental crust and suffered UHP metamorphism. Finally, the garnet-lherzolite exhumed to the earth surface together with the UHP terrane. Detailed analyses of reaction textures and mineral compositions revealed several stages of metasomatism related to continental subduction and exhumation.
Resumo:
Bayan Obo giant REE-Nb-Fe deposit in the northen margin of the North China Craton (NCC) is well known in the world for its abundant rare earth element resources. There is nearly one hundred year of studying history in substance component, chronology and geochemistry of the ore deposit, since the main ore body was found in 1927. However, there still exist remarkable divergences in genesis, mineralized age and material origin. Especially the REE enrichment mechanism leaves us a secret. Recent research shows that the Bayan Obo ore deposit likely resulted from the carbonatite magma activity, which is a favorable factor for REE accumulation. Based on the analysis of tectonic evolution history of north margin of NCC this thesis mainly discussed the formation background of cratonic margined rifts in Bayan Obo, and presented the analytical results of formation environment, intrusion age and deep origin of Proterozoic carbonatite magma. These research results can provide evidence for ore genesis. LA ICP-MS U-Pb dating on zircon shows that the Neoarchean basement was mainly composed of calc-alkaline TTG gneisses (2588±16Ma). The collision orogeny movement of the northen margin of the NCC between 2.0 Ga to 1.9 Ga brought the swarm of diorite-granodiotite magma (2023±16Ma) and intense regional metamorphism event (1906.3±7.7 Ma to 1892.7±6.7 Ma). In the sequent super continent break up background, intense metamorphic and deformed basement complex was uplifted to the surface suffered denudation, forming Mesoproterozoic Bayan Obo group in the contemporary continental margin rifts. The uplift of basement complex and formation of continental rifts were likely related with mantle plume activity. Evidence from petrological and geochemical data suggests that abundant alkaline-basic magma resulted from enhancement of continental breakup activity, that separated into carbonatite veins and mafic dykes by melt immiscibility mechanism, intruded in Bayan Obo margin rifts at the late stage of extension movement. Carbonatite veins can be divided into three main types by mineral composition: dolomite carbonatite, dolomite-calcite coexistent carbonatite and calcite carbonatite. Intrusion relationship between different types of carbonatite veins show that the calcite carbonatite veins were formed latter than the dolomite type as well as the coexistent type. Moreover, geochemical data also reveals successive and evolutive character between them. The content of REE increases together with the calcite minerals component. That is to say that REE gradually accumulated as the evolution of carbonatite magma. High precision Sm-Nd isochron data shows that the intrusion age of carbonatite veins was at 1319±48Ma. Moreover, the REE mineralization age in calcite carbonatite veins was around 1275±87Ma that is consistent with the intrusion age in error range. According to these data the abundant REE already existed in the carbonatite magma before intrusion and result in the earlier ore mineralization. The average age of mineralized dolomite was at 1353±100Ma, and the mineralization age of apatite in coarse grain dolomite was around 1329±150Ma. These data is consistent with carbonatite. Considering the coincident rare, trace element and isochron composition between them, it is presumed that mineralized dolomite was also the carbonatite intrusion and was the mainly factor for huge REE enrichment.
Resumo:
The zircons from gneisses in high and ultrahigh pressure (HP-UHP) metamorphic zones of the Dabie Mountains have been studied on three aspects in this paper, including (1) radiation damage of zircon using Laser Raman spectrum; (2) genesis determination of zircons based on geochemistry; (3) temperature estimate of the HP-UHP metamorphism using Ti-in-zircon thermometer. The zircons have the full widths at half-maximum less than 15 cm-1 at the 1008 cm-1 peak, suggesting that they are well crystallized to moderately damaged. The early inherited zircons from gneisses had undergone significant annealing and recrystallization during the HP-UHP metamorphic event. The α-doses that zircons suffered were accumulated from about 200Ma, indicating that HP-UHP metamorphic rocks have been exhumed to the surface of the earth at this time. The studies from the CL images, mineral inclusions, U-Pb ages and trace elements reveal that metamorphic zircons were formed as two kinds of mechanisms: metamorphic growth and recrystallization. The zircons of metamorphic growth and recrystallization zircons that were completely equilibrated during the HP-UHP metamorphic event have been chosen to carry out for temperature estimate using the Ti-in-zircon thermometer. The result shows that the HP-UHP terrain of the Dabie Mountains can be divided into five zones with temperature gaps, suggesting that the terrain consists of tectonic slices with different metamorphic history.
Resumo:
The central-south Tibet is a part of the products of the continental plate collision between Eurasia and India. To study the deep structure of the study area is significant for understanding the dynamics of the continental-continental collision. A 3-D density model matched well with the observations in the central-south Tibet was proposed in this study. In addition, this study has also used numerical simulation method to prove that Quasi-Love (QL) wave is deduced by anisotropy variation but not by lateral heterogeneity. Meanwhile, anisotropy variation in the upper mantle of the Qiangtang terrane and Lhasa terrane is detected by the QL waves observed in recorded seismograms. Based on the gravity modeling, some results are summarized as follows: 1) Under the constrain of geometrical structure detected by seismic data, a 3-D density model and Moho interface are proposed by gravity inversion of the central-south Tibet. 2) The fact that the lower crustal densities are smaller than 3.2 g/cm3, suggests absence of eclogite or partial eclogitization due to delamination under the central-south Tibet. 3) Seismicity will be strong or weak in the most negative Bouguer gravity anomaly. So there is no a certain relationship between seismicity and Bouguer gravity anomaly. 4) Crustal composition are determined after temperature-pressure calibration of seismic P wave velocity. The composition of lower crust might be one or a mixture of: 1. amphibolite and greenschist facies basalt beneath the Qiangtang terrane; 2. gabbro-norite-troctolite and mafic granulite beneath the Lhasa terrane. Because the composition of the middle crust cannot be well constrained by the above data set, the data set published by Rudnick & Fountain (1995) is used for comparison. It indicated the composition of the middle crust is granulite facies and might be pelitic gneisses.Granulite facies used to be interpreted as residues of partial melting, which coincidences with the previous study on partial melting middle crust. Amphibolite facies are thought to be produced after delamination, when underplating works in the rebound of the lower crust and lithospheric mantle. From the seismology study, I have made several followed conclusions: 1) Through the numerical simulation experiment of surface wave propagating in heterogeneity media, we can find that amplitude and polarization of surface wave only change a little when considering heterogeneity. Furthermore, it is proved that QL waves, generated by surface wave scattering, are caused by lateral variation of anisotropy but not by heterogeneity. 2) QL waves are utilized to determine the variation of uppermost mantle anisotropy of the Tibetan plateau. QL waves are identified from the seismograms of the selected paths recorded by the CAD station. The location of azimuth anisotropy gradient is estimated from the group velocities of Rayleigh wave, Love wave and QL wave. It suggests that south-north lateral variation of azimuthal anisotropy locates in Tanggula mountain, and east-west lateral variation in the north of Gandese mountain with 85°E longitude and near the Jinsha river fault with 85°E longitude.
Resumo:
Extensive high to ultrahigh pressure metamorphic rocks are outcropped in the the Dabie-Sulu UHP orogenic belt. Disputes still exist about for protolith nature of metamorphic rocks, petrogenesis, tectonic setting, and influence on upper mantle during the Triassic deep subduction. In this study, a combined study of petrology, geochemistry, isotope geochemistry and zircon chronology was accomplished for high-grade gneisses in the basement of the ultrahigh-pressure metamorphic Rongcheng terrane to reveal protolith nature and petrogenesis of the gneisses and to disucss the magmatic succession along the northern margin of the Yangtze block in Neoproterozoic. Gneisses in the Rongcheng terrane are characterized by negative Nb, Ta, P and Ti anomalies, relatively low Sr/Y ratios and relatively high Ba/La, Ba/Nb and Ba/Zr ratios, mostly displaying geochemical affinity to Phanerozoic volcanic arc. Neoproterozoic protolith ages (0.7 ~ 0.8 Ga) and Paleoproterozoic average crustal residence time (1.92 ~ 2.21 Ga) favour a Yangtze affinity. The gneisses mostly display characteristics of enrichment of LREE, flat heavy rare earth elements (REE) patterns, moderately fractionation between LREE and HREE and slight negative or positive Eu anomalies, probably reflecting that melting took place in the middle to low crust (26 ~ 33 km), where amphibole fractionated from the melts and/or inherited from source material as major mineral phases in the source area. Sr-Nd isotopic composition of the gneisses supports this conclusion. According to εNd(t) and εHf(t) values, the gneisses can be divided into three groups. Gneisses of group I have the highest εNd(t) and εHf(t) values, corresponding to the range of -6 ~ -3 and -2.9 ~ 13.4, respectively. This suggests obvious influx of depleted mantle or juvenile crust in the formation of protoliths. Gneisses of group II have medium εNd(t) (-9 ~ -7) and εHf(t) values (-15.8 ~ -1.4), corresponding to relatively high TDM2(Nd) (1.99 ~ 2.31 Ga) and TDM2(Hf) (1.76 ~ 2.67 Ga) , respectively. This suggests these gneisses were formed by partial melting of Paleoproterozoic crust. Gneisses of group III have the lowest εNd(t) (-15 ~ -10) and εHf(t) values (-15.8 ~ -1.4), corresponding to the largest TDM2(Nd) (1.99 ~ 2.31 Ga) and TDM2(Hf) ( 1.76 ~ 2.67 Ga), respectively. This indicates that gneisses of group III were formed by remelting of Archean crustal material and further demonstrates existence of an Archean basement probably of the Yangtze affinity beneath the Rongcheng terrane. Gneisses of three groups have also certain different geochemical characteristics. Contents of REEs and trace elements reduce gradually from group I to group III. Zirconium saturation temperatures also show similar tendency. Compared to gneisses of group II and group III, gneisses of group I display geochemical feature similar to extensional tectonic setting, having relatively little influence by the source area. Therefore, geochemical characteristics for gneisses of group I can indictate that the protoliths of the Rongcheng gneisses formed in an extensional rifting tectonic setting. This conclusion is supported by the results of eclogites and gabbros previously reported in the Dabie-Sulu orogenic belt. Statistical results of the protolith ages of the Rongcheng gneisses show two age peaks around ~728 Ma and ~783 Ma with an about 50 Ma gap. Extensive magatism in abou 750 Ma along the northern margin of the Yangtze block can hardly be observed in the Rongcheng terrane. This phenomenon likely suggests discontinuous Neoproterozoic magmatism along the northern margin of the Yangtze block.
Resumo:
The high density of slope failures in western Norway is due to the steep relief and to the concentration of various structures that followed protracted ductile and brittle tectonics. On the 72 investigated rock slope instabilities, 13 were developed in soft weathered mafic and phyllitic allochthons. Only the intrinsic weakness of such rocks increases the susceptibility to gravitational deformation. In contrast, the gravitational structures in the hard gneisses reactivate prominent ductile or/and brittle fabrics. At 30 rockslides along cataclinal slopes, weak mafic layers of foliation are reactivated as basal planes. Slope-parallel steep foliation forms back-cracks of unstable columns. Folds are specifically present in the Storfjord area, together with a clustering of potential slope failures. Folding increases the probability of having favourably orientated planes with respect to the gravitational forces and the slope. High water pressure is believed to seasonally build up along the shallow-dipping Caledonian detachments and may contribute to destabilization of the rock slope upwards. Regional cataclastic faults localized the gravitational structures at 45 sites. The volume of the slope instabilities tends to increase with the amount of reactivated prominent structures and the spacing of the latter controls the size of instabilities.
Resumo:
The Sand Creek Prospect is located within the eastern exposed margin of the Coast Plutonic Complex. The occurrence is a plug and dyke porphyry molybdenum deposit. The rock types, listed in decreasing age: 1) metamorphlc schists and gneisses; 2) diorite suite rocks - diorite, quartz diorite, tonalite; 3) rocks of andesitic composition; 4) granodiorites, coarse porphyritic granodiorite, quartzfeldspar porphyry, feldspar porphyry; and 5) lamprophyre. Hydrothermal alteration is known to have resulted from emplacement of the hornblende-feldspar porphyry through to the quartz-feldspar porphyry. Molybdenum mineralization is chiefly associated with the quartz-feldspar porphyry. Ore mineralogy is dominated by pyrite with subordinate molybdenite, chalcopyrite, covelline, sphalerite, galena, scheelite, cassiterite and wolframite. Molybdenite exhibits a textural gradation outward from the quartz-feldspar porphyry. That is, disseminated rosettes and rosettes in quartz veins to fine-grained molybdenite in quartz veins and potassic altered fractures to fine-grained molybdenite paint or 6mears in the peripheral zones. The quartz-feldspar porphyry dykes were emplaced in an inhomogeneous stress field. The trend of dykes, faults and shear zones is 0^1° to 063° and dips between 58° NW and 86* SE. Joint Pole distribution reflects this fault orientation. These late deformatior maxima are probably superimposed upon annuli representing diapiric emplacement of the plutons. A model of emplacement involving two magmatic pulses is given in the following sequence: Diorite pulse (i) dioritequartz diorite, (ii) tonalites; granodiorite pulse (iii) hornblende-fildspar microporphyry, hornblende/biotite porphyry, (iv) coarse grained granodiorite, (v) quartz-feldspar porphyry, (vi) feldspar porphyry, and (vii) lamprophyre. The combination of plutonic and coarse porphyritic textures, extensive propylitic overprinting of potassic alteration assemblages suggests that the. prospect represents the lower reaches of a porphyry system.