983 resultados para Glass industry
Resumo:
Mode of access: Internet.
Resumo:
No more published?
Resumo:
This exploratory study expands on hospitality management literature, specifically on the influence of a supervisor’s gender in regards to employee job satisfaction within the casino-entertainment sector. Employee job satisfaction was analyzed using company, department, and supervisor variables based on 961 surveys. The study’s results suggest that employees with male supervisors have a higher employee satisfaction level than employees with supervisors that are female. Hospitality organizations are therefore encouraged to create leadership programs to ensure women are a part of corporate leadership’s success formula for the future.
Resumo:
In recent times, light gauge steel frame (LSF) wall systems are increasingly used in the building industry. They are usually made of cold-formed and thin-walled steel studs that are fire-protected by two layers of plasterboard on both sides. A composite LSF wall panel system was developed recently, where an insulation layer was used externally between the two plasterboards to improve the fire performance of LSF wall panels. In this research, finite element thermal models of the new composite panels were developed using a finite element program, SAFIR, to simulate their thermal performance under both standard and Eurocode design fire curves. Suitable apparent thermal properties of both the gypsum plasterboard and insulation materials were proposed and used in the numerical models. The developed models were then validated by comparing their results with available standard fire test results of composite panels. This paper presents the details of the finite element models of composite panels, the thermal analysis results in the form of time-temperature profiles under standard and Eurocode design fire curves and their comparisons with fire test results. Effects of using rockwool, glass fibre and cellulose fibre insulations with varying thickness and density were also investigated, and the results are presented in this paper. The results show that the use of composite panels in LSF wall systems will improve their fire rating, and that Eurocode design fires are likely to cause severe damage to LSF walls than standard fires.
Resumo:
The export market for Australian wine continues to grow at a rapid rate, with imported wines also playing a role in market share in sales in Australia. It is estimated that over 60 per cent of all Australian wine is exported, while 12 per cent of wine consumed in Australia has overseas origins. In addition to understanding the size and direction (import or export) of wines, the foreign locales also play an important role in any tax considerations. While the export market for Australian produced alcohol continues to grow, it is into the Asian market that the most significant inroads are occurring. Sales into China of bottled wine over $7.50 per litre recently overtook the volume sold our traditional partners of the United States and Canada. It is becoming easier for even small to medium sized businesses to export their services or products overseas. However, it is vital for those businesses to understand the tax rules applying to any international transactions. Specifically, one of the first tax regimes that importers and exporters need to understand once they decide to establish a presence overseas is transfer pricing. These are the rules that govern the cross-border prices of goods, services and other transactions entered into between related parties. This paper is Part 2 of the seminar presented on transfer pricing and international tax issues which are particularly relevant to the wine industry. The predominant focus of Part 2 is to discuss four key areas likely to affect international expansion. First, the use of the available transfer pricing methodologies for international related party transactions is discussed. Second, the affects that double tax agreements will have on taking a business offshore are considered. Third, the risks associated with aggressive tax planning through tax information exchange agreements is reviewed. Finally, the paper predicts future ‘trip-wires’ and areas to ‘watch out for’ for practitioners dealing with clients operating in the international arena.
Resumo:
The research explores the potential for participatory and collaborative approaches in working with the Indonesian glass-bead rural craft industry, which currently struggles to sustain its business. Contextual inquiry and participatory action research were used to understand the local context, including motivations, barriers and opportunities and to collaboratively develop strategies for advancement and innovation. The study documents participatory design projects undertaken to make, sell and promote hedonic products. It identifies the importance of understanding local context and individual craftsperson aspirations in designing collaborative support programs. It also provides an in depth insight into the Indonesian rural craft industry.
Resumo:
The number of drug substances in formulation development in the pharmaceutical industry is increasing. Some of these are amorphous drugs and have glass transition below ambient temperature, and thus they are usually difficult to formulate and handle. One reason for this is the reduced viscosity, related to the stickiness of the drug, that makes them complicated to handle in unit operations. Thus, the aim in this thesis was to develop a new processing method for a sticky amorphous model material. Furthermore, model materials were characterised before and after formulation, using several characterisation methods, to understand more precisely the prerequisites for physical stability of amorphous state against crystallisation. The model materials used were monoclinic paracetamol and citric acid anhydrate. Amorphous materials were prepared by melt quenching or by ethanol evaporation methods. The melt blends were found to have slightly higher viscosity than the ethanol evaporated materials. However, melt produced materials crystallised more easily upon consecutive shearing than ethanol evaporated materials. The only material that did not crystallise during shearing was a 50/50 (w/w, %) blend regardless of the preparation method and it was physically stable at least two years in dry conditions. Shearing at varying temperatures was established to measure the physical stability of amorphous materials in processing and storage conditions. The actual physical stability of the blends was better than the pure amorphous materials at ambient temperature. Molecular mobility was not related to the physical stability of the amorphous blends, observed as crystallisation. Molecular mobility of the 50/50 blend derived from a spectral linewidth as a function of temperature using solid state NMR correlated better with the molecular mobility derived from a rheometer than that of differential scanning calorimetry data. Based on the results obtained, the effect of molecular interactions, thermodynamic driving force and miscibility of the blends are discussed as the key factors to stabilise the blends. The stickiness was found to be affected glass transition and viscosity. Ultrasound extrusion and cutting were successfully tested to increase the processability of sticky material. Furthermore, it was found to be possible to process the physically stable 50/50 blend in a supercooled liquid state instead of a glassy state. The method was not found to accelerate the crystallisation. This may open up new possibilities to process amorphous materials that are otherwise impossible to manufacture into solid dosage forms.
Resumo:
Anodic bonding of Pyrex glass/Al/Si is an important bonding technique in micro/nanoelectromechanical systems (MEMS/NEMS) industry. The anodic bonding of Pyrex 7740 glass/Aluminum film/Silicon is completed at the temperature from 300 degrees C to 375 degrees C with a bonding voltage between 150 V and 450 V. The fractal patterns are formed in the intermediate Al thin film. This pattern has the fractal dimension of the typical two-dimensional diffusion-limited aggregation (2D DLA) process, and the fractal dimension is around 1.7. The fractal patterns consist of Al and Si crystalline grains, and their occurrences are due to the limited diffusion, aggregation, and crystallization of Si and Al atoms in the intermediate Al layers. The formation of the fractal pattern is helpful to enhance the bonding strength between the Pyrex 7740 glass and the aluminum thin film coated on the crystal silicon substrates.
Resumo:
Metal-alumina joints have found various practical applications in electronic devices and high technology industry. However, making of sound metal ceramic brazed couple is still a challenge in terms of its direct application in the industry. In this work we successfully braze copper with Al2O3 ceramic using Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass forming alloy as filler alloy. The shear strength of the joints can reach 140 MPa, and the microstructrural analysis confirms a reliable chemical boning of the interface. The results show that the bulk metallic glass forming alloys with high concentration of active elements are prospective for using as filler alloy in metal-ceramic bonding.
Resumo:
Metal-alumina joints have found various practical applications in electronic devices and high technology industry. However, making of sound metal ceramic brazed couple is still a challenge in terms of its direct application in the industry. In this work we successfully braze copper with Al2O3 ceramic using Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass forming alloy as filler alloy. The shear strength of the joints can reach 140 MPa, and the microstructrural analysis confirms a reliable chemical boning of the interface. The results show that the bulk metallic glass forming alloys with high concentration of active elements are prospective for using as filler alloy in metal-ceramic bonding.
Resumo:
The extrinsic tensile strength of glass can be determined explicitly if the characteristics of the critical surface flaw are known, or stochastically if the critical flaw characteristics are unknown. This paper makes contributions to both these approaches. Firstly it presents a unified model for determining the strength of glass explicitly, by accounting for both the inert strength limit and the sub-critical crack growth threshold. Secondly, it describes and illustrates the use of a numerical algorithm, based on the stochastic approach, that computes the characteristic tensile strength of float glass by piecewise summation of the surface stresses. The experimental validation and sensitivity analysis reported in this paper show that the proposed computer algorithm provides an accurate and efficient means of determining the characteristic strength of float glass. The algorithm is particularly useful for annealed and thermally treated float glass used in the construction industry. © 2012 Elsevier Ltd.
Resumo:
In this paper we investigate a number of gas flames for fire polishing borosilicate glass capillaries used in the manufacturing of IVF micro-pipettes. Hydrofluoric acid (HF) was also used as an alternative to finish the pipette end. Glass micro tools in the IVF industry are drawn from hollow glass capillaries of diameter 1 mm. These capillaries are cut manually to a length of 100 mm from hollow glass rods resulting in sharp and chipped edges. These capillaries are held in a customised holder having padding of soft silicone or rubber. Sharp and uneven edges of these capillaries pick up particles of rubber or soft silicone shavings, rendering them ineffective for IVF treatments. The working range of borosilicate glass is 800-1,200 degrees C. The experiments involved analysis of fire polishing process for borosilicate glass capillaries using candle, butane, propane, 2350 butane propane, oxyacetylene gas flames, finding the optimum distance of the capillary relative to the flame, optimum time for which the capillary should be held in the flame and optimum region of the flame which gives the required temperature range. The results show that 2350 butane propane gas mix is optimum for fire polishing of borosilicate glass capillaries. The paper is concluded by comparing the results of fire polishing with the results of acid polishing, in which HF of 1.6% concentration is used to etch the ends of the borosilicate glass pipettes.
Resumo:
This investigation aims to characterise the damping properties of the nonwoven materials with potential applications in automotive and aerospace industry. Nonwovens are a popular choice for many applications due to their relatively low manufacturing cost and unique properties. It is known that nonwovens are efficient energy dispersers for certain applications such as acoustic damping and ballistic impact. It is anticipated that these energy absorption properties could eventually be used to provide damping for mechanical vibrations. However the behaviour of nonwovens under dynamic load and vibration has not been investigated before. Therefore we intend to highlight these aspects of the behaviour of the nonwovens through this research. In order to obtain an insight to the energy absorption properties of the nonwoven fabrics, a range of tests has been performed. Forced vibration of the cantilever beam is used to explore damping over a range of resonance modes and input amplitudes. The tests are conducted on aramid, glass fibre and polyester fabrics with a range of area densities and various coatings. The tests clarified the general dynamic behaviour of the fabrics tested and the possible response in more real application condition as well. The energy absorption in both thickness and plane of the fabric is tested. The effects of the area density on the results are identified. The main absorption mechanism is known to be the friction. The frictional properties are improved by using a smaller fibre denier and increasing fibre length, this is a result of increasing contact surface between fibres. It is expected the increased friction result in improving damping. The results indicate different mechanism of damping for fiber glass fabrics compared to the aramid fabrics. The frequency of maximum efficiency of damping is identified for the fabrics tested. These can be used to recommend potential applications.
Resumo:
The potential of multiple layer fibre-reinforced mouldings is of growing interest to the rotational moulding industry because of their cost/performance ratio. The particular problem that arises when using reinforcements in this process relate to the fact that the process is low shear and good mixing of resin and reinforcement is not optimum under those conditions. There is also a problem of the larger/heavier reinforcing agents segregating out of the powder to lay up on the inner part surface. In this study, short glass fibres were incorporated and distributed into a polymer matrix to produce fibre-reinforced polymer composites using the rotational moulding process and characterised in terms of morphology and mechanical properties. © 2011 American Institute of Physics.