55 resultados para Gironde
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Plan de Bordeaux. It was published ca. 1910. Scale 1:10,000. Covers La Gironde Rivière area, Bordeaux, France. This layer is image 1 of 2 total images of the two sheet source map, representing the southern portion of the map. Map in French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the 'European Datum 1950 UTM 30N' projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, built-up areas and selected buildings and industries, docks and wharves, and more. Includes manuscript additions. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Plan de Bordeaux. It was published ca. 1910. Scale 1:10,000. Covers La Gironde Rivière area, Bordeaux, France. This layer is image 2 of 2 total images of the two sheet source map, representing the northern portion of the map. Map in French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the 'European Datum 1950 UTM 30N' projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, built-up areas and selected buildings and industries, docks and wharves, and more. Includes manuscript additions. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
No more published.
Resumo:
Suspended 1946-1951; resumed in 1952 with nouv. sér., t. 1er.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Extracted from the Jahres bericht ... der ... Stifts -gymnasiums zu Zeits. 1845-1846.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Vol. 2 edited by Alexandre Gouget et Jean-Auguste Brutails.
Inventaire sommaire des Archives départementales antérieures à 1790 : Gironde : Série E supplément /
Resumo:
T. 1 (nos. 1 à 2163) -- t. 2 (nos. 2164 à 3697) -- t. 3 (nos. 3698 à 4657 -- t. r (4657 à 5690).
Resumo:
Zinc stable isotopes measurements by MC-ICP-MS, validated by laboratory intercalibrations, were performed on wild oysters, suspended particles and filtered river/estuarine water samples to provide new constraints for the use of Zn isotopes as environmental tracers. The samples selected were representative of the long range (400 km) transport of metal (Zn, Cd, etc.) contamination from former Zn-refining activities at Decazeville (i.e. δ66Zn > 1 ‰) and its phasing out, recorded during 30 years in wild oysters from the Gironde Estuary mouth (RNO/ROCCH sample bank). The study also addresses additional anthropogenic sources (urban and viticulture) and focuses on geochemical reactivity of Zn in the turbidity gradient and the maximum turbidity zone (MTZ) of the fluvial Gironde Estuary. In this area, dissolved Zn showed a strong removal onto suspended particulate matter (SPM) and progressive enrichment in heavy isotopes with increasing SPM concentrations varying from δ66Zn = -0.02 ‰ at 2 mg/L to +0.90 ‰ at 1310 mg/L. These signatures were attributed to kinetically driven adsorption due to strongly increasing sorption sites in the turbidity gradient and MTZ of the estuary. Oysters from the estuary mouth, contaminated sediments from the Lot River and SPM entering the estuary showed parallel historical evolutions (1979-2010) for Zn/Cd ratios but not for δ66Zn values. Oysters had signatures varying from δ66Zn = 1.43 ‰ in 1983 to 1.18 ‰ in 2010 and were offset by δ66Zn = 0.6 - 0.7 ‰ compared to past (1988) and present SPM from the salinity gradient. Isotopic signatures in river-borne particles entering the Gironde Estuary under contrasting freshwater discharge regimes during 2003-2011 showed similar values (δ66Zn ≈ 0.35 ± 0.03 ‰; 1SD, n=15), i.e. they were neither related to former metal refining activities at least for the past decade nor clearly affected by other anthropogenic sources. Therefore, the Zn isotopic signatures in Gironde oysters reflect the geochemical reactivity of Zn in the estuary rather than signatures of past metallurgical contaminations in the watershed as recorded in contaminated river sediments. The study also shows that the isotopic composition of Zn is strongly fractionated by its geochemical reactivity in the Gironde Estuary, representative of meso-macrotidal estuarine systems.
Resumo:
The influence of Loire and Gironde River discharges over the sea surface temperature (SST) in the eastern Bay of Biscay (0.6º–36.6ºW, 44.2º–47.8ºW) was analyzed by means of two complementary databases (MODIS and OISST1/4). The area influenced by river plume showed a different SST when compared with the adjacent oceanic area for the months when the plume attains its highest extension (December, January, and February). Ocean was observed to warm at a rate of approximately 0.3ºC dec−1 while temperature at the area influenced by the rivers cooled at a rate of −0.15ºC dec−1 over the period 1982–2014. The mere presence of a freshwater layer is able to modulate the warming observed at adjacent ocean locations since the coastal area is isolated from the rest of the Bay. This nearshore strip is the only part of the Bay where changes in SST depend on North Atlantic Oscillation (NAO) but not on North Atlantic SST represented by the Atlantic Multidecadal Oscillation (AMO). These different cooling-warming trends are even more patent over the last years (2002–2014) under atmospheric favorable conditions for plume enhancement. River runoff increased at a rate on the order of 120 m3s−1dec−1 over that period and southwesterly winds, which favor the confinement of the plume, showed a positive and significant trend both in duration and intensity. Thus, the coastal strip has been observed to cool at a rate of −0.5°C dec−1.
Resumo:
For decades, global climate change has directly and indirectly affected the structure and function of ecosystems. Abrupt changes in biodiversity have been observed in response to linear or sudden modifications to the environment. These abrupt shifts can cause long-term reorganizations within ecosystems, with communities exhibiting new functional responses to environmental factors. Over the last 3 decades, the Gironde estuary in southwest France has experienced 2 abrupt shifts in both the physical and chemical environments and the pelagic community. Rather than describing these shifts and their origins, we focused on the 3 inter-shift periods, describing the structure of the fish community and its relationship with the environment during these periods. We described fish biodiversity using a limited set of descriptors, taking into account both species composition and relative species abundances. Inter-shift ecosystem states were defined based on the relationship between this description and the hydro-physico-chemical variables and climatic indices defining the main features of the environment. This relationship was described using generalized linear mixed models on the entire time series and for each inter-shift period. Our results indicate that (1) the fish community structure has been significantly modified, (2) environmental drivers influencing fish diversity have changed during these 3 periods, and (3) the fish-environment relationships have been modified over time. From this, we conclude a regime shift has occurred in the Gironde estuary. We also highlight that anthropogenic influences have increased, which re-emphasizes the importance of local management in maintaining fish diversity and associated goods and services within the context of climate change.