128 resultados para Ginger
Resumo:
Ginger is considered by many people to be the outstanding member among 1400 other species in the family Zingiberaceae. Not only it is a valuable spice used by cooks throughout the world to impart unique flavour to their dishes but it also has a long track record in some Chinese and Indian cultures for treating common human ailments such as colds and headaches. Ginger has recently attracted considerable attention for its anti-inflammatory, antibacterial and antifungal properties. However, ginger as a crop is also susceptible to at least 24 different plant pathogens, including viruses, bacteria, fungi and nematodes. Of these, Pythium spp. (within the kingdom Stramenopila, phyllum Oomycota) are of most concern because various species can cause rotting and yield loss on ginger at any of the growth stages including during postharvest storage. Pythium gracile was the first species in the genus to be reported as a ginger pathogen, causing Pythium soft rot disease in India in 1907. Thereafter, numerous other Pythium spp. have been recorded from ginger growing regions throughout the world. Today, 15 Pythium species have been implicated as pathogens of the soft rot disease. Because accurate identification of a pathogen is the cornerstone of effective disease management programs, this review will focus on how to detect, identify and control Pythium spp. in general, with special emphasis on Pythium spp. associated with soft rot on ginger.
Resumo:
Pythium soft rot (PSR) of ginger caused by a number of Pythium species is of the most concern worldwide. In Australia, PSR outbreaks associated with Pythium myriotylum was recorded in 2007. Our recent pathogenicity tests in Petri dishes conducted on ginger rhizomes and pot trials on ginger plants showed that Pythiogeton (Py.) ramosum, an uncommon studied oomycete in Pythiaceae, was also pathogenic to ginger at high temperature (30–35 °C). Ginger sticks excised from the rhizomes were colonised by Py. ramosum which caused soft rot and browning lesions. Ginger plants inoculated with Py. ramosum showed initial symptoms of wilting and leave yellowing, which were indistinguishable from those of Pythium soft rot of ginger, at 10 days after inoculation. In addition, morphological and phylogenetic studies indicated that isolates of Py. ramosum were quite variable and our isolates obtained from soft rot ginger were divided into two groups based on these variations. This is also for the first time Py. ramosum is reported as a pathogen on ginger at high temperatures.
Resumo:
Ginger (Zingiber officinale Roscoe) has been proposed as a promising candidate for cancer prevention. Its modifying potential on the process of colon carcinogenesis induced by 1,2-dimethylhydrazine (DMH) was investigated in male Wistar rats using the aberrant crypt foci (ACF) assay. Five groups were studied: Groups 1-3 were given four s.c. injections of DMH (40 mg/kg b.w.) twice a week, during two weeks, whereas Groups 4 and 5 received similar injections of EDTA solution (DMH vehicle). After DMH-initiation, the animals were fed a ginger extract mixed in the basal diet at 0.5% (Group 2) and 1.0% (Groups 3 and 4) for 10 weeks. All rats were killed after 12 weeks and the colons were analyzed for ACF formation and crypt multiplicity. The rates of cell proliferation and apoptosis were also evaluated in epithelial colonic crypt cells. Dietary consumption of ginger at both dose levels did not induce any toxicity in the rats, but ginger meal at 1% decreased significantly serum cholesterol levels (p < 0.038). Treatment with ginger did not suppress ACF formation or the number of crypts per ACF in the DMH-treated group. Dietary ginger did not significantly change the proliferative or apoptosis indexes of the colonic crypt cells induced by DMH. Thus, the present results did not confirm a chemopreventive activity of ginger on colon carcinogenesis as analyzed by the ACF bioassay and by the growth kinetics of the colonic mucosa. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The modifying potential of ginger on the development of preneoplasia and tumors in the male Wistar rat urinary bladder was investigated in a 36-week-long initiation-promotion assay for chemical carcinogenesis. Groups G1 to G3 were given 0.05% N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) in drinking water for 5 weeks and a 3% uracil meal for the subsequent 3 weeks. Groups G4 and G5 were treated with 3% uracil only for the same period. After these steps, groups G2, and G3 and G4 were fed for 26 weeks a ginger extract mixed at 0.5 and 1.0% in a basal diet, respectively. Thirty six weeks after the beginning of the experiment all rats were killed. The multiplicity of urothelial lesions (hyperplasia and neoplasia) was significantly lower (P = 0.013) in group G3 than in groups G1 and G2. The results suggest that 1.0% ginger meal exerts a protective effect on the post-initiation stage of rat chemically-induced urothelial carcinogenesis.
Resumo:
Extracts of the spice ginger (Zingiber officinale Roscoe) are rich in gingerols and shogaols, which exhibit antioxidant, anti-inflammatory, antifungal, anti mycobacterial, and anticarcinogenic proprieties. The present study evaluated the chemoprotective effects of a ginger extract on the DNA damage and the development of bladder cancer induced by N-butyl-N-(4-hydroxibutyl) nitrosamine (BBN)/N-methyl-N-nitrosourea (MNU) in male Swiss mice. Groups G1-G3 were given 0.05% BBN in drinking water for 18 weeks and four i.p. injections of 30 mg/kg body weight MNU at 1, 3, 10, and 18 weeks. Group G4 and G5 received only the BBN or MNU treatments, respectively, and groups G6 and G7 were not treated with BBN or MNU. Additionally, Groups G2, G3, and G6 were fed diets containing 1, 2, and 2% ginger extract, respectively, while Groups G1, G4, G5, and G7 were fed basal diet. Samples of peripheral blood were collected during the experiment for genotoxicity analysis; blood collected 4 hr after each MNU dose was used for the analysis of DNA damage with the Comet assay (assay performed on leukocytes from all groups), while reficulocytes collected 24 hr after the last MNU treatment of Groups G5-G7 were used for the micronucleus assay. At the end of the experiment, the urinary bladder was removed, fixed, and prepared for histopathological, cell proliferation, and apoptosis evaluations. Ginger by itself was not genotoxic, and it did not alter the DNA damage levels induced by the BBN/MNU treatment during the course of the exposure. The incidence and multiplicity of simple and nodular hyperplasia and transitional cell carcinoma (TCC) were increased by the BBN/MNU treatment, but dietary ginger had no significant effect on these responses. However, in Group G2 (BBN/MNU/2% ginger-treated group), there was an increased incidence of Grade 2 TCC. The results suggest that ginger extract does not inhibit the development of BBN-induced mouse bladder tumors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: The purpose of this paper is to evaluate the antioxidant activity of ginger ethanol extract in soybean oil under thermoxidation. Design/methodology/approach: A total of four treatments were used: soybean oil free of synthetic antioxidants, soybean oil containing 2,500 mg/kg of ginger extract, soybean oil containing 50 mg/kg of TBHQ, soybean oil containing the mixture of natural extract, and TBHQ in the before-cited concentration. The treatments were discontinuously submitted to plates heated at 180°C, for 20 hours. Samples were removed in the times of 0, 4, 8, 12, 16 and 20 hours of heating and they were analyzed as to their oxidative stability, total polar compounds, peroxide and conjugated diene values. Findings: The results showed the efficiency of the ginger extract in protecting the oil against lipid oxidation. It could be concluded that ginger extract might be indicated as an additive that acts against lipid oxidation and, consequently, increases shelf life of food. Practical implications: These studies may prove to be beneficial to the exploitation of natural antioxidant sources for the preservation and/or extension of raw and processed food shelf life. Therefore, they could also be applied in the area of pharmaceuticals for the protection of human life. Originality/value: This study offers information on the use of natural antioxidants as an alternative to the use of synthetic antioxidants, which might be considered toxic. © Emerald Group Publishing Limited.
Resumo:
Vinegar is a food of condiments group that have great use in the food industry. This study aimed to evaluate the effects of parameters of the acetic fermentation process in the production of ginger vinegar. A suspension of ginger rhizomes with 12% of starch was subjected to enzymatic hydrolysis process to obtain hydrolyzed with 85.6% of glucose. After the alcoholic fermentation the wine was obtained with 40.3% ethanol. The acetic fermentation process of ginger alcoholic solution followed a completely randomized design in a factorial for three factors at two levels. The independent variables were: temperature, nutrients and proportion of "strong vinegar" and alcoholic solution (initial acidity). Results showed variation from 2.74 to 3.70% for dry extract and 2.13 to 2.83% for ash in vinegars. The profile of organic acids of ginger vinegars showed the presence of acetic, citric, malic and succinic acids in all treatments. The condition of 20 degrees C, initial acidity 1:1, with addition of nutrients allow obtaining good quality vinegars and higher GK yields.
Resumo:
Introduction: In Brazil part of the production of ginger is of inadequate quality for export. The production of spirit from felt-over rhizomes is an alternative of great interest to producers of these rhizomes. Aim: Aiming to increase the value of felt-over rhizomes, this work aimed to study the use of ginger as a raw material for alcoholic beverage production. It was evaluated the effect of fermentation conditions on the components of fermented alcoholic, as well as, the quality of alcoholic distilled beverage of ginger. Methods: Dehydrated ginger passed by enzymatic hydrolysis-saccharification processes. The hydrolysate obtained was analyzed for sugar profile in HPLC. The alcoholic fermentation process followed the central composite rotational design for three factors: fermentation temperature (23 to 37ºC), time of fermentation (17 to 33 h) and concentration of inoculum (0.22 to 3.00%). The fermented alcoholic obtained was analyzed in HPLC for the contents of ethanol, methanol, glycerol and residual sugars. The distillated alcoholic beverage of ginger was analyzed for ethanol, methanol, acetaldehyde, ethyl acetate and higher alcohols in the gas chromatography (GC). In addition, copper content and acidity were analyzed Results: Sugar profile of the ginger hydrolysate revealed the presence of 77.8% of glucose. Data analysis of fermentation process showed influence of temperature on ethanol and methanol content of the fermented alcoholic of ginger. Time of fermentation had effect on glycerol content. All parameters of process had influence on residual sugars contents. The HPLC analysis has shown presence of methanol, ethyl acetate, aldehyde, acids, higher alcohols and esters in distilled alcoholic beverage of ginger. Conclusion: Fermented alcoholic of ginger with higher levels of ethanol can be obtained under the conditions of 1.5% w/w of inoculum, 30°C of temperature and 24 hours of fermentation time. In this condition of fermentation process the beverage of ginger had good quality.
Resumo:
Exiguobacterium antarcticum is a psychotropic bacterium isolated for the first time from microbial mats of Lake Fryxell in Antarctica. Many organisms of the genus Exiguobacterium are extremophiles and have properties of biotechnological interest, e. g., the capacity to adapt to cold, which make this genus a target for discovering new enzymes, such as lipases and proteases, in addition to improving our understanding of the mechanisms of adaptation and survival at low temperatures. This study presents the genome of E. antarcticum B7, isolated from a biofilm sample of Ginger Lake on King George Island, Antarctic peninsula.
Resumo:
Animal studies suggest that ginger (Zingiber officinale Roscoe) reduces anxiety. In this study, bioactivity-guided fractionation of a ginger extract identified nine compounds that interact with the human serotonin 5-HT(1A) receptor with significant to moderate binding affinities (K(i)=3-20 microM). [(35)S]-GTP gamma S assays indicated that 10-shogaol, 1-dehydro-6-gingerdione, and particularly the whole lipophilic ginger extract (K(i)=11.6 microg/ml) partially activate the 5-HT(1A) receptor (20-60% of maximal activation). In addition, the intestinal absorption of gingerols and shogaols was simulated and their interactions with P-glycoprotein were measured, suggesting a favourable pharmacokinetic profile for the 5-HT(1A) active compounds.
Resumo:
The rhizome of ginger (Zingiber officinale) is employed in Asian traditional medicine to treat mild forms of rheumatoid arthritis and fever. We have profiled ginger constituents for robust effects on proinflammatory signaling and cytokine expression in a validated assay using human whole blood. Independent of the stimulus used (LPS, PMA, anti-CD28 Ab, anti-CD3 Ab, and thapsigargin), ginger constituents potently and specifically inhibited IL-1β expression in monocytes/macrophages. Both the calcium-independent phospholipase A(2) (iPLA(2))-triggered maturation and the cytosolic phospholipase A(2) (cPLA(2))-dependent secretion of IL-1β from isolated human monocytes were inhibited. In a fluorescence-coupled PLA(2) assay, most major ginger phenylpropanoids directly inhibited i/cPLA(2) from U937 macrophages, but not hog pancreas secretory phospholipase A(2). The effects of the ginger constituents were additive and the potency comparable to the mechanism-based inhibitor bromoenol lactone for iPLA(2) and methyl arachidonyl fluorophosphonate for cPLA(2), with 10-gingerol/-shogaol being most effective. Furthermore, a ginger extract (2 μg/ml) and 10-shogaol (2 μM) potently inhibited the release of PGE(2) and thromboxane B2 (>50%) and partially also leukotriene B(4) in LPS-stimulated macrophages. Intriguingly, the total cellular arachidonic acid was increased 2- to 3-fold in U937 cells under all experimental conditions. Our data show that the concurrent inhibition of iPLA(2) and prostanoid production causes an accumulation of free intracellular arachidonic acid by disrupting the phospholipid deacylation-reacylation cycle. The inhibition of i/cPLA(2), the resulting attenuation of IL-1β secretion, and the simultaneous inhibition of prostanoid production by common ginger phenylpropanoids uncover a new anti-inflammatory molecular mechanism of dietary ginger that may be exploited therapeutically.
Resumo:
http://commons.clarku.edu/vpadrl/1051/thumbnail.jpg