994 resultados para Geomorphology river


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work deals with the An integrated study on the hydrogeology of Bharathapuzha river basin ,south west coast of india. To study the spatial and temporal behaviour of the groundwater system of the Bharathapuzha river basin.To discover the sub-surface parameter by ground resistivity surveys.T o determine the groundwater quality of the Bharathapuzha river basin for the different seasons {pre monsoon and post monsoon with reference to the domestic and irrigational water quality standards.Present study will provide a good database on the hydrogeological aspects within the river basin.The study area covers l7 block Panchayats. Of these, Chitoor block is ‘over exploited’, Kollengode, Trithala, and Palakkad are ‘critical’ in category and Kuttippuram and Sreekrishnapuram blocks are ‘semi critical’ in terms of groundwater development.Comparison of Geomorphology map with drainage map shows that the geomorphology has a clear control on the drainage net work of the basin. The structural hill area shows a highest drainage network, where as pediment shows lowest drainage network.There are many discontinuous lineament in the Bharathapuzha river basin which can be connected by a straight line.Ground water flow directions are generally towards the western portions of the study area. From the northern region Water flows towards the central and also water from the eastern and southern side confluences at the centre and move towards western side of the basin.The positive correlation of transmissivity and storativity values show good aquifer conditions exists in the present study area .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrodynamic characteristics of an estuary resulting from interaction of tide and river runoff are important since problems regarding flood, salinity intrusion, water quality, ecosystem and sedimentation are ubiquitous. The present study focuses on such hydrodynamic aspects in the Cochin estuary. Most of the estuaries that come under the influence of Indian Summer Monsoon and for which the salinity is never in a steady state at any time of the year are generally shallow and convergent, i.e. the width decreases rapidly from mouth to head. In contrast, Cochin estuary is wider towards the upstream and has no typical river mouth, where the rivers are joining the estuary along the length of its channel .Adding to the complexity it has dual inlets and the tidal range is 1 m which is lower than other Indian estuaries along west coast. These typical physical features lead to its unique hydrodynamic characteristics. Therefore the thesis objectives are: I) to study the influence of river runoff on tidal propagation using observations and a numerical model ii) to study stratification and property distributions in Cochin estuary iii) to understand salinity distributions and flushing characteristics iv) to understand the influence of saltwater barrage on tides and salinity v) To evaluate several classification schemes for the estuary

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A U-series calcrete chronology has been constructed for three Late Quaternary terrace units, termed the D1, D2 and D3 terraces in age descending order, from the Rio Aguas river system of the Sorbas basin, southeast Spain. The D1 terrace formed between 30,300 +/- 4400 year BP and 12,140 +/- 360 year BP, correlating well with the Last Glacial Maximum when rates of sediment supply would have increased greatly, because of higher rates of weathering, reduced vegetation cover and weak soil development. The D2 terrace formed between 12,800 +/- 1100 year BP and 9,600 +/- 530 year BP, correlating well with the Younger Dryas event. The D3 terrace could only be poorly constrained to the early Holocene and no unequivocal cause could be assigned to this period of aggradation. The sedimentology and geomorphology of the D2 terrace suggests, however, that the aggradation of this unit was a response to diapirism/karstic processes occurring within the underlying Messinian gypsum strata and the subsequent damming of the Aguas system. Therefore, despite its coincident occurrence with the Younger Dryas, aggradation of the D2 terrace is unrelated to climate change. The style of this response, controlled predominantly by the characteristics of the underlying bedrock, makes correlating the terrace record of the Aguas with other systems in the Mediterranean unreliable. This study, therefore, highlights the problems of correlating fluvial sequences in regions of variable tectonics, climatic history and bedrock geology and emphasises the need to properly understand the main controls on individual fluvial systems before any attempt is made to correlate their depositional histories. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pantanal wetland is located in a tectonically active interior sedimentary basin in west-central Brazil. The south-flowing Paraguay River is the trunk-river of an alluvial constructional landform comprising several large alluvial fans, the largest one of which is the Taquari megafan. The Taquari River flows in two distinct geomorphologic zones within the megafan. Entrenched on sediments of Pleistocene fan lobes, the Taquari River flows in a 3 to 5 km wide meander belt in the upper fan, where avulsion is hindered by entrenchment. Downstream of the intersection point, stream discharge progressively decreases and the Taquari River becomes narrow and shallow toward the Paraguay River plain. Within the distributary fan lobe, the channel-levee sandy complex is topographically higher than the adjacent floodplains and avulsion is a natural consequence of crevasses in the natural levees. Many channel avulsions have occurred during the last decades and documented cases show that significant channel changes may take place in a few years. Beginning with crevassing in 1988 and ending with the abandonment of the former channel in 1998, the river completely changed course in the lower fan. Presently, a major avulsion is occurring in the upper portion of the growing fan lobe, where many crevasses have appeared in the natural levees with associated splays onto the floodbasin. New anastomosed channels have formed north of the Taquari River, but downstream of them the flow is unconfined and the water spreads into natural floodbasins. This avulsion is still in process and allows observation of channel evolution, the geomorphic features produced, the sedimentary processes involved, and resulting effects. If the new channels do not rejoin the main channel, the river mouth may abandon its present master channel and shift to a position a hundred kilometers north from its present position. A large volume of sediment has been transferred to the floodbasin, with progradation of crevasse splay deposits over fine overbank sediments. Many geomorphic features, recognizable in satellite and radar images, clearly show that avulsion has occurred many limes before in the Taquari River. Avulsion belt deposits and former diverted channels testify to ancient avulsion events within the fan lobe and show that progradation of splays onto the floodbasin is the most important infilling process within the Taquari distributary fan lobe. The avulsion process in the lower Taquari River has accelerated in the last 30 years, along with the magnitude of flooding. Pasture and intensive agriculture in the catchment area has increased the sediment supply to the wetland, but larger floods are also a consequence of higher rainfall since 1973. Avulsion and floods have been a cause of great concern among the local population and landowners. Before human intervention in attempting to control floods, however, a better understanding of the avulsive river system is needed, especially because a major navigation project including the channelization of the Paraguay River was recently proposed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analysis of covariance relating basin area (A, km2) to river length (L, km) and discharge rate (D, m3 s-1) was performed for two continents and showed that the two covariates (L and D) were highly significant and that the strength of the relationship changed between continents. For comparison, D was excluded but the result remained the same. Although geomorphological models are useful for establishing global levels of production, these regressions should be applied with caution. Historically, simple statistical models were developed to predict fish catches in rivers. These, based upon regression of catches on channel length or basin area for Africa and Central Amazonia, are contrasted in this paper because of their generally similar approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main structural and geomorphological features along the Amazon River are closely associated with Mesozoic and Cenozoic tectonic events. The Mesozoic tectonic setting is characterised by the Amazonas and Marajó Basins, two distinct extensional segments. The Amazonas Basin is formed by NNE-SSW normal faults, which control the emplacement of dolerite dykes and deposition of the sedimentary pile. In the more intense tectonic phase (mid-Late Cretaceous), the depocentres were filled with fluvial sequences associated with axial drainage systems, which diverge from the Lower Tapajós Arch. During the next subsidence phase, probably in the Early Tertiary, and under low rate extension, much of the drainage systems reversed, directing the paleo-Amazon River to flow eastwards. The Marajó Basin encompasses NW-SE normal faults and NE-SW strike-slip faults, with the latter running almost parallel to the extensional axes. The normal faults controlled the deposition of thick rift and post-rift sequences and the emplacement of dolerite dykes. During the evolution of the basin, the shoulder (Gurupá Arch) became distinct, having been modelled by drainage systems strongly controlled by the trend of the strike-slip faults. The Arari Lineament, which marks the northwest boundary of the Marajó Basin, has been working as a linkage corridor between the paleo and modern Amazon River with the Atlantic Ocean. The neotectonic evolution since the Miocene comprises two sets of structural and geomorphological features. The older set (Miocene-Pliocene) encompasses two NE-trending transpressive domains and one NW-trending transtensive domain, which are linked to E-W and NE-SW right-lateral strike-slip systems. The transpressive domains display aligned hills controlled by reverse faults and folds, and are separated by large plains associated with pull-apart basins along clockwise strike-slip systems (e.g. Tupinambarana Lineament). Many changes were introduced in the landscape by the transpressive and transtensive structures, such as the blockage of major rivers, which evolved to river-lakes, transgression of the sea over a large area in the Marajó region, and uplift of long and narrow blocks that are oblique to the trend of the main channel. The younger set (Pliocene-Holocene) refers to two triple-arm systems of rift/rift/strike-slip and strike-slip/strike-slip/rift types, and two large transtensive segments, which have controlled the orientation of the modern drainage patterns. © 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pioneer GPR - Ground Penetrating Radar - survey was carried out in the Pantanal of Mato Grosso State, westcentral region of Brazil. Fieldwork acquisitions were carried out in February/2001 and August/2002 in order to understand avulsion processes that are occurring within the Taquari alluvial megafan. The main subjects were to map channel, crevasses and floodplain morphology, as well as active sedimentary bedforms. Many GPR profiles were surveyed in the medium and lower Taquari River course. Subaqueous megaripples and exposed sand bars inside the Taquari channel were identified in the medium fan area. Similar features were observed in the lower fan channels, where there are also many crevasses in the marginal levees. During the flooding seasons the flow splays out in the floodplain where new distributary channels are being formed. As shown by GPR data, in the lower fan the Taquari channel is topographically higher than the adjacent floodplain, situation in which avulsion is a natural process of river course shifting. The lack of information about river morphology and dynamics is a major strain to better understand the sediment transport and the avulsion processes in the Taquari megafan. In this context, the GPR data obtained in wet and dry seasons, integrated to sedimentological information, have been very important to characterize the fluvial dynamics and the avulsion phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Northern Apennines (NA) chain is the expression of the active plate margin between Europe and Adria. Given the low convergence rates and the moderate seismic activity, ambiguities still occur in defining a seismotectonic framework and many different scenarios have been proposed for the mountain front evolution. Differently from older models that indicate the mountain front as an active thrust at the surface, a recently proposed scenario describes the latter as the frontal limb of a long-wavelength fold (> 150 km) formed by a thrust fault tipped around 17 km at depth, and considered as the active subduction boundary. East of Bologna, this frontal limb is remarkably very straight and its surface is riddled with small, but pervasive high- angle normal faults. However, west of Bologna, some recesses are visible along strike of the mountain front: these perturbations seem due to the presence of shorter wavelength (15 to 25 km along strike) structures showing both NE and NW-vergence. The Pleistocene activity of these structures was already suggested, but not quantitative reconstructions are available in literature. This research investigates the tectonic geomorphology of the NA mountain front with the specific aim to quantify active deformations and infer possible deep causes of both short- and long-wavelength structures. This study documents the presence of a network of active extensional faults, in the foothills south and east of Bologna. For these structures, the strain rate has been measured to find a constant throw-to-length relationship and the slip rates have been compared with measured rates of erosion. Fluvial geomorphology and quantitative analysis of the topography document in detail the active tectonics of two growing domal structures (Castelvetro - Vignola foothills and the Ghiardo plateau) embedded in the mountain front west of Bologna. Here, tilting and river incision rates (interpreted as that long-term uplift rates) have been measured respectively at the mountain front and in the Enza and Panaro valleys, using a well defined stratigraphy of Pleistocene to Holocene river terraces and alluvial fan deposits as growth strata, and seismic reflection profiles relationships. The geometry and uplift rates of the anticlines constrain a simple trishear fault propagation folding model that inverts for blind thrust ramp depth, dip, and slip. Topographic swath profiles and the steepness index of river longitudinal profiles that traverse the anti- clines are consistent with stratigraphy, structures, aquifer geometry, and seismic reflection profiles. Available focal mechanisms of earthquakes with magnitude between Mw 4.1 to 5.4, obtained from a dataset of the instrumental seismicity for the last 30 years, evidence a clear vertical separation at around 15 km between shallow extensional and deeper compressional hypocenters along the mountain front and adjacent foothills. In summary, the studied anticlines appear to grow at rates slower than the growing rate of the longer- wavelength structure that defines the mountain front of the NA. The domal structures show evidences of NW-verging deformation and reactivations of older (late Neogene) thrusts. The reconstructed river incision rates together with rates coming from several other rivers along a 250 km wide stretch of the NA mountain front and recently available in the literature, all indicate a general increase from Middle to Late Pleistocene. This suggests focusing of deformation along a deep structure, as confirmed by the deep compressional seismicity. The maximum rate is however not constant along the mountain front, but varies from 0.2 mm/yr in the west to more than 2.2 mm/yr in the eastern sector, suggesting a similar (eastward-increasing) trend of the apenninic subduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In-stream structures including cross-vanes, J-hooks, rock vanes, and W-weirs are widely used in river restoration to limit bank erosion, prevent changes in channel gradient, and improve aquatic habitat. During this investigation, a rapid assessment protocol was combined with post-project monitoring data to assess factors influencing the performance of more than 558 in-stream structures and rootwads in North Carolina. Cross-sectional survey data examined for 221 cross sections from 26 sites showed that channel adjustments were highly variable from site to site, but approximately 60 % of the sites underwent at least a 20 % net change in channel capacity. Evaluation of in-stream structures ranging from 1 to 8 years in age showed that about half of the structures were impaired at 10 of the 26 sites. Major structural damage was often associated with floods of low to moderate frequency and magnitude. Failure mechanisms varied between sites and structure types, but included: (1) erosion of the channel bed and banks (outflanking); (2) movement of rock materials during floods; and (3) burial of the structures in the channel bed. Sites with reconstructed channels that exhibited large changes in channel capacity possessed the highest rates of structural impairment, suggesting that channel adjustments between structures led to their degradation of function. The data question whether currently used in-stream structures are capable of stabilizing reconfigured channels for even short periods when applied to dynamic rivers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Bolivian Amazon several paleochannel generations are preserved. Their wide spectrum of morphologies clearly provides crucial information on the type and magnitude of geomorphic and hydrological changes within the drainage network of the Andean foreland. Therefore, in this study we mapped geomorphological characteristics of paleochannels, and applied radiocarbon and optically stimulated luminescence dating. Seven paleochannel generations are identified. Significant changes in sinuosity, channel widths and river pattern are observed for the successive paleochannel generations. Our results clearly reflect at least three different geomorphic and hydrological periods in the evolution of the fluvial system since the late Pleistocene. Changes in discharge and sediment load may be controlled by combinations of two interrelated mechanisms: (i) spatial changes and re-organizations of the drainage network in the upper catchment, and/or (ii) climate changes with their associated local to catchment-scale modifications in vegetation cover, and changes in discharge, inundation frequencies and magnitudes, which have likely affected the evolution of the fluvial system in the Llanos de Moxos. In summary, our study has revealed the enormous potential which geomorphic mapping and analysis combined with luminescence based chronologies hold for the reconstruction of the late Pleistocene to recent fluvial system in a large portion of Amazonia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While large-scale transverse drainages (TDs) such as those of the Susquehanna River above Harrisburg, PA, have been recognized since the 19th century, there have been no systematic surveys done of TDs since that of Ver Steeg's in 1930. Here, the results are presented of a topographic and statistical analysis of TDs in the Susquehanna River basin using Google Earth and associated overlays. 653 TDs were identified in the study area, 95% of which contain streams with discharges of less than 10 m3/s. TD depths ranged from a 23 m deep water gap near Blain, PA, to the 539 m deep gorge of the Juniata River through Jacks Mountain. Although TD depth tended to increase with stream size, many small streams were located in deep gaps, and eight streams with discharges of 10 m3/s or less were found in gorges whose depths matched or exceeded the deepest TD of the Susquehanna, the largest stream in the basin. Streams of less than 10 m3/s made up the majority of TDs regardless of the rock type capping the breached structure. Overall, TDs through sandstone-capped ridges were deeper than those topped by shales, and TDs in both sandstones and shales displayed a lognormal distribution of depths, which may be indicative of a preferred value. Stream flow direction was primarily perpendicular to local structural strike, with 47% of streams flowing NW and 53% flowing SE. 19% of the TDs were found to be in alignment with at least one other TD, with aligned segment lengths ranging from .5 to 14.8 km. The majority of TDs were in rocks of Paleozoic age. The techniques described here allow the frequency and distribution of TDs to be quantified so that they can be integrated into models of basin evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in the geomorphology of rivers have serious repercussions, causing losses in the dynamics and naturalness of their forms, going in many cases, from a type of meandering channel, with constant erosion and sedimentation processes, to a channelized narrow river with rigid and stable margins, where the only possibility of movement occurs in the vertical, causing the only changes in channel geometry occur in the river bed. On the other hand, these changes seriously affect the naturalness of the banks, preventing the development of riparian vegetation and reducing the cross connectivity of the riparian corridor. Common canalizations and disconnections of meanders increase the slope, and therefore speed, resulting in processes of regressive erosion, effect increased as a result of the narrowing of the channel and the concentration of flows. This process of incision may turn the flood plain to be "hung", being completely disconnected from the water table, with important consequences for vegetation. As an example of the effects of these changes, it has been chosen the case of the Arga River The Arga river has been channelized and rectified, as it passes along the meander RamalHondo and Soto Gil (Funes, Navarra). The effects on fish habitat and riparian vegetation by remeandering the Arga River are presented. and Ttwo very contrasting situationsrestoration hypothesis, in terms of geomorphology concerns, have been established to assess the effects these changes have on the habitat of one of the major fish species in the area (Luciobabus graellsii) and on the riparian vegetation. To accomplish this goal, it has been necessary to used the a digital elevation model provided by LIDAR flight, bathymetric data, flow data, as inputs, and a hydraulic simulation model 2D (Infoworks RS). The results obtained not only helped to evaluate the effects of the past alterations of geomorphologic characteristics, but also to predict fish and vegetation habitat responses to this type of changes.