928 resultados para Geometry Character


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is a new hollow flange section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming technologies. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. It has found increasing popularity in residential, industrial and commercial buildings as flexural members. The LSB is considerably lighter than traditional hot-rolled steel beams and provides both structural and construction efficiencies. However, the LSB flexural members are subjected to a relatively new lateral distortional buckling mode, which reduces their member moment capacities. Unlike the commonly observed lateral torsional buckling of steel beams, the lateral distortional buckling of LSBs is characterised by simultaneous lateral defection, twist and cross sectional change due to web distortion. The current design rules in AS/NZS 4600 (SA, 2005) for flexural members subject to lateral distortional buckling were found to be conservative by about 8% in the inelastic buckling region. Therefore, a new design rule was developed for LSBs subject to lateral distortional buckling based on finite element analyses of LSBs. The effect of section geometry was then considered and several geometrical parameters were used to develop an advanced set of design rules. This paper presents the details of the finite element analyses and the design curve development for hollow flange sections subject to lateral distortional buckling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several approaches have been proposed to recognize handwritten Bengali characters using different curve fitting algorithms and curvature analysis. In this paper, a new algorithm (Curve-fitting Algorithm) to identify various strokes of a handwritten character is developed. The curve-fitting algorithm helps recognizing various strokes of different patterns (line, quadratic curve) precisely. This reduces the error elimination burden heavily. Implementation of this Modified Syntactic Method demonstrates significant improvement in the recognition of Bengali handwritten characters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter reports on research work that aims to overcome some limitations of conventional community engagement for urban planning. Adaptive and human-centred design approaches that are well established in human-computer interaction (such as personas and design scenarios) as well as creative writing and dramatic character development methods (such as the Stanislavsky System and the Meisner Technique) are yet largely unexplored in the rather conservative and long-term design context of urban planning. Based on these approaches, we have been trialling a set of performance based workshop activities to gain insights into participants’ desires and requirements that may inform the future design of apartments and apartment buildings in inner city Brisbane. The focus of these workshops is to analyse the behaviour and lifestyle of apartment dwellers and generate residential personas that become boundary objects in the cross-disciplinary discussions of urban design and planning teams. Dramatisation and embodied interaction of use cases form part of the strategies we employed to engage participants and elicit community feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of rapid development have increased pressures on these places exacerbated by the competition between two key industry sectors, commercial base and tourism development. This, in supplement with urbanisation and industrialisation, has posted a high demand for the uses of these spaces. The political scenario and lack of adaptation on ecological principles and public participations in its design approach have sparked stiff environmental, historical and cultural constraint towards its landscape character as well as the ecological system. Therefore, a holistic approach towards improving the landscape design process is extremely necessary to protect human well being, cultural, environmental and historical values of these places. Limited research also has been carried out to overcome this situation. This further has created an urgent need to explore better ways to improve the landscape design process of Malaysian heritage urban river corridor developments that encompass the needs and aspirations of the Malaysian multi-ethnic society without making any drastic changes to the landscape character of the rivers. This paper presents a methodology to develop an advanced Landscape Character Assessment (aLCA) framework for evaluating the landscape character of the places, derived from the perception of two keys yet oppositional stakeholders: urban design team and special interest public. The triangulation of subjectivist paradigm methodologies: the psychophysical approach; the psychological approach; and, the phenomenological approach will be employed. The outcome will be used to improve the present landscape design process for future development of these places. Unless a range of perspectives can be brought to bear on enhancing the form and function of their future development and management, urban river corridors in the Malaysian context will continue to decline.