999 resultados para Geomagnetic Activity
Resumo:
This study examines the performance of series of two geomagnetic indices and series synthesized from a semi-empirical model of magnetospheric currents, in explaining the geomagnetic activity observed at Northern Hemipshere's mid-latitude ground-based stations. We analyse data, for the 2007 to 2014 period, from four magnetic observatories (Coimbra, Portugal; Panagyurishte, Bulgary; Novosibirsk, Russia and Boulder, USA), at geomagnetic latitudes between 40° and 50° N. The quiet daily (QD) variation is firstly removed from the time series of the geomagnetic horizontal component (H) using natural orthogonal components (NOC) tools. We compare the resulting series with series of storm-time disturbance (Dst) and ring current (RC) indices and with H series synthesized from the Tsyganenko and Sitnov (2005, doi:10.1029/2004JA010798) (TS05) semi-empirical model of storm-time geomagnetic field. In the analysis, we separate days with low and high local K-index values. Our results show that NOC models are as efficient as standard models of QD variation in preparing raw data to be compared with proxies, but with much less complexity. For the two stations in Europe, we obtain indication that NOC models could be able to separate ionospheric and magnetospheric contributions. Dst and RC series explain the four observatory H-series successfully, with values for the mean of significant correlation coefficients, from 0.5 to 0.6 during low geomagnetic activity (K less than 4) and from 0.6 to 0.7 for geomagnetic active days (K greater than or equal to 4). With regard to the performance of TS05, our results show that the four observatories separate into two groups: Coimbra and Panagyurishte, in one group, for which the magnetospheric/ionospheric ratio in QD variation is smaller, a dominantly QD ionospheric contribution can be removed and TS05 simulations are the best proxy; Boulder and Novosibirsk,in the other group, for which the ionospheric and magnetospheric contributions in QD variation can not be differentiated and correlations with TS05 series can not be made to improve. The main contributor to magnetospheric QD signal are Birkeland currents. The relatively good success of TS05 model in explaining ground-based irregular geomagnetic activity at mid-latitudes makes it an effective tool to classify storms according to their main sources. For Coimbra and Panagyurishte in particular, where ionospheric and magnetospheric daily contributions seem easier to separate, we can aspire to use the TS05 model for ensemble generation in space weather (SW) forecasting and interpretation of past SW events.
The polar ionosphere at Zhongshan Station on May 11, 1999, the day the solar wind almost disappeared
Resumo:
The solar wind almost disappeared on May 11,1999: the solar wind plasma density and' dynamic pressure were less than 1 cm(-3) and 0.1 nPa respectively, while the interplanetary magnetic field was northward. The polar ionospheric data observed by the multi-instruments at Zhongshan Station in Antarctica on such special event day was compared with those of the control day (May 14). It was shown that geomagnetic activity was very quiet on May 11 at Zhongshan. The magnetic pulsation, which usually occurred at about magnetic noon, did not appear. The ionosphere was steady and stratified, and the F-2 layer spread very little. The critical frequency of dayside F-2 layer, f(0)F(2), was larger than that of control day, and the peak of f(0)F(2) appeared 2 hours earlier. The ionospheric drift velocity was less than usual. There were intensive auroral E-s appearing at magnetic noon. All this indicates that the polar ionosphere was extremely quiet and geomagnetic field was much more dipolar on May 11. There were some signatures of auroral substorm before midnight, such as the negative deviation of the geomagnetic H component, accompanied with auroral E-s and weak Pc3 pulsation.
Resumo:
The probability for a halo coronal mass ejection (CME) to be geoeffective is assumed to be higher the closer the CME launch site is located to the solar central meridian. However, events far from the central meridian may produce severe geomagnetic storms, like the case in April 2000. In this work, we study the possible geoeffectiveness of full halo CMEs with the source region situated at solar limb. For this task, we select all limb full halo (LFH) CMEs that occurred during solar cycle 23, and we search for signatures of geoeffectiveness between 1 and 5 days after the first appearance of each CME in the LASCO C2 field of view. When signatures of geomagnetic activity are observed in the selected time window, interplanetary data are carefully analyzed in order to look for the cause of the geomagnetic disturbance. Finally, a possible association between geoeffective interplanetary signatures and every LFH CME in solar cycle 23 is checked in order to decide on the CME's geoeffectiveness. After a detailed analysis of solar, interplanetary, and geomagnetic data, we conclude that of the 25 investigated events, there are only four geoeffective LFH CMEs, all coming from the west limb. The geoeffectiveness of these events seems to be moderate, turning to intense in two of them as a result of cumulative effects from previous mass ejections. We conclude that ejections from solar locations close to the west limb should be considered in space weather, at least as sources of moderate disturbances.
Resumo:
The probability for a halo coronal mass ejection (CME) to be geoeffective is assumed to be higher the closer the CME launch site is located to the solar central meridian. However, events far from the central meridian may produce severe geomagnetic storms, like the case in April 2000. In this work, we study the possible geoeffectiveness of full halo CMEs with the source region situated at solar limb. For this task, we select all limb full halo (LFH) CMEs that occurred during solar cycle 23, and we search for signatures of geoeffectiveness between 1 and 5 days after the first appearance of each CME in the LASCO C2 field of view. When signatures of geomagnetic activity are observed in the selected time window, interplanetary data are carefully analyzed in order to look for the cause of the geomagnetic disturbance. Finally, a possible association between geoeffective interplanetary signatures and every LFH CME in solar cycle 23 is checked in order to decide on the CME's geoeffectiveness. After a detailed analysis of solar, interplanetary, and geomagnetic data, we conclude that of the 25 investigated events, there are only four geoeffective LFH CMEs, all coming from the west limb. The geoeffectiveness of these events seems to be moderate, turning to intense in two of them as a result of cumulative effects from previous mass ejections. We conclude that ejections from solar locations close to the west limb should be considered in space weather, at least as sources of moderate disturbances.