982 resultados para Geology, Stratigraphic -- Neogene
Resumo:
Mode of access: Internet.
Resumo:
Includes index.
Resumo:
From the Annual report of state geologist of New Jersey for the year 1894.
Resumo:
"Bibliography of the district": p. 293-301.
Resumo:
Mode of access: Internet.
Resumo:
The rock sequence of the Tertiary Beda Formation of S. W. concession 59 and 59F block in Sirte Basin of Libya has been subdivided into twelve platformal carbonate microfacies. These microfacies are dominated by muddy carbonates, such as skeletal mudstones, wackestones, and packstones with dolomites and anhydrite. Rock textures, faunal assemblages and sedimentary structures suggest shallow, clear, warm waters and low to moderate energy conditions within the depositional shelf environment. The Beda Formation represents a shallowing-upward sequence typical of lagoonal and tidal flat environments marked at the top by sabkha and brackish-water sediments. Microfossils include benthonic foraminifera, such as miliolids, Nummulites, - oerculina and other smaller benthonics, in addition to dasycladacean algae, ostracods, molluscs, echinoderms, bryozoans and charophytes. Fecal pellets and pelloids, along with the biotic allochems, contributed greatly to the composition of the various microfacies. Dolomite, where present, is finely crystalline and an early replacement product. Anhydrite occurs as nodular, chickenwire and massive textures indicating supratidal sabkha deposition. Compaction, micr it i zat ion , dolomit izat ion , recrystallization, cementation, and dissolution resulted in alteration and obliteration of primary sedimentary structures of the Beda Formation microfacies. The study area is located in the Gerad Trough which developed as a NE-SW trending extensional graben. The Gerad trough was characterized by deep-shallow water conditions throughout the deposition of the Beda Formation sediments. The study area is marked by several horsts and grabens; as a result of extent ional tectonism. The area was tectonically active throughout the Tertiary period. Primary porosity is intergranular and intragranular, and secondary processes are characterized by dissolution, intercrystalline, fracture and fenestral features. Diagenesis, through solution leaching and dolomitization, contributed greatly to porosity development. Reservoir traps of the Beda Formation are characterized by normal fault blocks and the general reservoir characteristics/properties appear to be facies controlled.
Resumo:
The Verulam Formation (Middle Ordovician) at the Lakefield Quarry and Gamebridge Quarry, southern Ontario, is comprised of five main lithofacies. These include shoal deposits consisting of Lithofacies 1, winnowed crinoidal grainstones and, shelf deposits consisting of: Lithofacies 2, wackestones, packstones, grainstones, and rudstones; Lithofacies 3, laminated calcisiltites; Lithofacies 4, nodular wackestones and mudstones; and, Lithofacies 5, laminated mudstones and shales. The distribution of the lithofacies was influenced by variations in storm frequency and intensity during a relative sea level fall. Predominant convex-up attitudes of concavo-convex shells within shell beds suggest syndepositional reworking during storm events. The bimodal orientations of shell axes on the upper surfaces of the shell beds indicates deposition under wave-generated currents. The sedimentary features and shell orientations indicate that the shell beds were deposited during storm events and not by the gradual accumulation of shelly material. Cluster and principal component analysis of relative abundance data of the taxa in the shell beds, interbedded nodular wackestones and mudstones, and laminated mudstones and shales, indicates one biofacies comprised of three main assemblages: a strophomenid (Sowerbyelladominated) assemblage, a transitional mixed strophomenid-atrypid assemblage and an atrypid (Zygospira-dominatQd) assemblage. The occurrence of the strophomenid, the strophomenid-atrypid and atrypid assemblages were controlled by storm-driven allogenic taphonomic feedback.
Resumo:
330 km 2 of the easter-n part of the Archean Manitou Lakes - Stormy Lake metavolcanic - metasedimentary belt have been mapped and sampled. A large number of rocks ~.vere analyzed for the major and trace constituents including the rare-earth elements (REE). The Stormy Lake - Kawashegamuk Lake area may be subdivided into four major lithological groups of supracrustal rocks 1) A north-facing mafic assemblage, consisting of pillowed tholeiitic basalts and gabbro sills characterized by flat REE profiles, is exposed in the south part of the map area and belongs to a 8000 m thick homoclinal assemblage outside the map area. Felsic pyroclastic rocks believed to have been issued from a large central vent conformably overlie the tholeiites. 2) A dominantly epiclastic group facing to the north consists of terrestrial deposits interpreted to be an alluvial fan deposit ; a submarine facies is represented by turbiditic sediments. 3) The northeastern part of the study area consists of volcanic rocks belonging to two mafic - felsic cycles facing to the southuest ; andesitic flows with fractionated REE patterns make up a large part of the upper cycle, whereas the lower cycle has a stronger chemical polarity being represented by tholeiitic flows, with flat REE, which a r e succeeded by dacitic and rhyolitic pyroclasti cs. iii 4) A thick monotonous succession of tholeiitic pillmled basalt f lows and gabbro sills with flat REE represent the youngest supracrustal rocks. TIle entire belt underwent folding, faulting and granitic plutonism during a tectono-thermal event around 2700 Ma ago. Rocks exposed in the map area were subjected to regional greenschist facies metamorphism, but higher metamorphic grades are present near late granitic intrusions. Geochemical studies have been useful in 1) distinguishing the various rock units ; 2) relating volcanic and intrusive rocks 3) studying the significance of chemical changes due to post magmatic processes 4) determining the petrogenesis of the major volcanic rock types. In doing so, two major volcanic suites have been recognized : a) a tholeiitic suite, mostly represented by mafic rocks, was derived from partial melting of upper mantle material depleted in Ti, K and the light REE ; b) a calc-alkalic suite which evolved from partial melting of amphibolite in the lower crust. The more differentiated magma types have been produced by a multistage process involving partial melting and fractional crystallization to yield a continuum of compos i t i ons ranging from basaltic andesite to rhyolite. A model for the development of the eastern part of the Manitou Lakes - Stormy Lake belt has been proposed.
Resumo:
The Pater metavolcanic suite (PVS) was extruded as part O'f the basal Pater Formation of the Huronian Supergroup ca. 2.4 Ga. They Ars classified as wi thin-plate tholeiites associated with an immature ri-fting episode, and are inter layered with associated vol cani clastic and metasedimentary units. Post-solidif ication alteration caused redistribution o-f the alkalies, Sr, Rb, Ba, Cu, and SiO^. Ce, Y, Zr, CFezOs (as total Fe), Al^Os, TiOa, and, PaOa are considered to have remained essentially immobile in least altered samples. Petrogenetic modelling indicates the PVS was derived from the partial melting of two geochemical ly similar sources in the sub-continental lithosphere. Fractionation was characterized by an oli vine-plagioclase assemblage and a sub-volcanic plagioclase-clinopyroxene assemblage. A comparative study indicates that enrichment of the postulated Huronian source cannot be reconciled by Archean contamination. Enrichment is thought to have been caused by hydrous veined metasomatic heterogeneities in the sub-continental lithosphere, generated by an Archean subduct ion event before 2.68 Ga.