953 resultados para Genomics and genetics
Resumo:
In plants, an oligogene family encodes NADP-malic enzymes (NADP-me), which are responsible for various functions and exhibit different kinetics and expression patterns. In particular, a chloroplast isoform of NADP-me plays a key role in one of the three biochemical subtypes of C4 photosynthesis, an adaptation to warm environments that evolved several times independently during angiosperm diversification. By combining genomic and phylogenetic approaches, this study aimed at identifying the molecular mechanisms linked to the recurrent evolutions of C4-specific NADP-me in grasses (Poaceae). Genes encoding NADP-me (nadpme) were retrieved from genomes of model grasses and isolated from a large sample of C3 and C4 grasses. Genomic and phylogenetic analyses showed that 1) the grass nadpme gene family is composed of four main lineages, one of which is expressed in plastids (nadpme-IV), 2) C4-specific NADP-me evolved at least five times independently from nadpme-IV, and 3) some codons driven by positive selection underwent parallel changes during the multiple C4 origins. The C4 NADP-me being expressed in chloroplasts probably constrained its recurrent evolutions from the only plastid nadpme lineage and this common starting point limited the number of evolutionary paths toward a C4 optimized enzyme, resulting in genetic convergence. In light of the history of nadpme genes, an evolutionary scenario of the C4 phenotype using NADP-me is discussed.
Resumo:
The availability of the genome sequence of the bacterial plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, is accelerating important investigations concerning its pathogenicity. Plant vessel occlusion is critical for symptom development. The objective of the present study was to search for information that would help to explain the adhesion of X. fastidiosa cells to the xylem. Scanning electron microscopy revealed that adhesion may occur without the fastidium gum, an exopolysaccharide produced by X. fastidiosa, and X-ray microanalysis demonstrated the presence of elemental sulfur both in cells grown in vitro and in cells found inside plant vessels, indicating that the sulfur signal is generated by the pathogen surface. Calcium and magnesium peaks were detected in association with sulfur in occluded vessels. We propose an explanation for the adhesion and aggregation process. Thiol groups, maintained by the enzyme peptide methionine sulfoxide reductase, could be active on the surface of the bacteria and appear to promote cell-cell aggregation by forming disulfide bonds with thiol groups on the surface of adjacent cells. The enzyme methionine sulfoxide reductase has been shown to be an auxiliary component in the adhesiveness of some human pathogens. The negative charge conferred by the ionized thiol group could of itself constitute a mechanism of adhesion by allowing the formation of divalent cation bridges between the negatively charged bacteria and predominantly negatively charged xylem walls.
Resumo:
La possibilité d'utiliser l'information génétique dans le domaine de l'assurance vie a soulevé des discussions autour des politiques et des législations, et ce, au niveau international, régional et national. Dans certains pays offrant des services de santé universels, le débat sur la génétique et l'assurance vie a envisagé de possibles restrictions quant à l'utilisation de l’information génétique en matière d’assurance.
Resumo:
Este título pertenece a una serie que ofrece en profundidad una visión de las células en todo el mundo vivo, su estructura y los procesos en que se basa la vida en la Tierra. Explica lo que ocurre cuando las células se dividen. La división celular es la manera en que los organismos crecen. Aun cuando es un organismo totalmente desarrollado, algunas células continúan dividiendse para sustituir a aquellas que han envejecido o se han dañado. Explora la relación entre los cromosomas, los genes y el ADN. A continuación, examina la forma especial de la división celular que participa en la reproducción, sus características y cómo se transmiten de una generación a otra. Se analizan cuestiones éticas relacionadas con la investigación con células. Tiene índice, glosario, referencias bibliográficas y un cuadro con código genético.
Resumo:
The male and female homosexual orientation has substantial prevalence in humans and can be explained by determinants of various levels: biological, genetic, psychological, social and cultural. However, the biological and genetic evidence have been the main hypotheses tested in scientific research in the world. This article aims to review research studies about the existence of genetic and biological evidence that determine homosexual orientation. Was conducted a review of the literature, using the database MedLine/PubMed and Google scholar. The papers and books were searched in Portuguese and English, using the following keywords: sexual orientation, sexual behavior, homosexuality, developmental Biology and genetics. Was selected papers of the last 22 years. Were found five main theories about the biological components: (1) fraternal birth order, (2) brain androgenization and 2D:4D ratio; (3) brain activation by pheromones; and (4) epigenetic inheritance; and four theories about the genetic components: (1) genetic polymorphism; (2) pattern of X-linked inheritance; (3) monozygotic twins; and (4) sexual antagonistic selection. Concluded that there were many scientific evidence found over time to explain some of biological and genetic components of homosexuality, especially in males. However, today, there is no definitive explanation about what are the determinants of homosexual orientation components.
Resumo:
The development of high throughput techniques ('chip' technology) for measurement of gene expression and gene polymorphisms (genomics), and techniques for measuring global protein expression (proteomics) and metabolite profile (metabolomics) are revolutionising life science research, including research in human nutrition. In particular, the ability to undertake large-scale genotyping and to identify gene polymorphisms that determine risk of chronic disease (candidate genes) could enable definition of an individual's risk at an early age. However, the search for candidate genes has proven to be more complex, and their identification more elusive, than previously thought. This is largely due to the fact that much of the variability in risk results from interactions between the genome and environmental exposures. Whilst the former is now very well defined via the Human Genome Project, the latter (e.g. diet, toxins, physical activity) are poorly characterised, resulting in inability to account for their confounding effects in most large-scale candidate gene studies. The polygenic nature of most chronic diseases offers further complexity, requiring very large studies to disentangle relatively weak impacts of large numbers of potential 'risk' genes. The efficacy of diet as a preventative strategy could also be considerably increased by better information concerning gene polymorphisms that determine variability in responsiveness to specific diet and nutrient changes. Much of the limited available data are based on retrospective genotyping using stored samples from previously conducted intervention trials. Prospective studies are now needed to provide data that can be used as the basis for provision of individualised dietary advice and development of food products that optimise disease prevention. Application of the new technologies in nutrition research offers considerable potential for development of new knowledge and could greatly advance the role of diet as a preventative disease strategy in the 21st century. Given the potential economic and social benefits offered, funding for research in this area needs greater recognition, and a stronger strategic focus, than is presently the case. Application of genomics in human health offers considerable ethical and societal as well as scientific challenges. Economic determinants of health care provision are more likely to resolve such issues than scientific developments or altruistic concerns for human health.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)