885 resultados para Genomewide association studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Essential hypertension is a multifactorial disorder and is the main risk factor for renal and cardiovascular complications. The research on the genetics of hypertension has been frustrated by the small predictive value of the discovered genetic variants. The HYPERGENES Project investigated associations between genetic variants and essential hypertension pursuing a 2-stage study by recruiting cases and controls from extensively characterized cohorts recruited over many years in different European regions. The discovery phase consisted of 1865 cases and 1750 controls genotyped with 1M Illumina array. Best hits were followed up in a validation panel of 1385 cases and 1246 controls that were genotyped with a custom array of 14 055 markers. We identified a new hypertension susceptibility locus (rs3918226) in the promoter region of the endothelial NO synthase gene (odds ratio: 1.54 [95% CI: 1.37-1.73]; combined P=2.58 · 10(-13)). A meta-analysis, using other in silico/de novo genotyping data for a total of 21 714 subjects, resulted in an overall odds ratio of 1.34 (95% CI: 1.25-1.44; P=1.032 · 10(-14)). The quantitative analysis on a population-based sample revealed an effect size of 1.91 (95% CI: 0.16-3.66) for systolic and 1.40 (95% CI: 0.25-2.55) for diastolic blood pressure. We identified in silico a potential binding site for ETS transcription factors directly next to rs3918226, suggesting a potential modulation of endothelial NO synthase expression. Biological evidence links endothelial NO synthase with hypertension, because it is a critical mediator of cardiovascular homeostasis and blood pressure control via vascular tone regulation. This finding supports the hypothesis that there may be a causal genetic variation at this locus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma liver-enzyme tests are widely used in the clinic for the diagnosis of liver diseases and for monitoring the response to drug treatment. There is considerable evidence that human genetic variation influences plasma levels of liver enzymes. However, such genetic variation has not been systematically assessed. In the present study, we performed a genome-wide association study of plasma liver-enzyme levels in three populations (total n = 7715) with replication in three additional cohorts (total n = 4704). We identified two loci influencing plasma levels of alanine-aminotransferase (ALT) (CPN1-ERLIN1-CHUK on chromosome 10 and PNPLA3-SAMM50 on chromosome 22), one locus influencing gamma-glutamyl transferase (GGT) levels (HNF1A on chromosome 12), and three loci for alkaline phosphatase (ALP) levels (ALPL on chromosome 1, GPLD1 on chromosome 6, and JMJD1C-REEP3 on chromosome 10). In addition, we confirmed the associations between the GGT1 locus and GGT levels and between the ABO locus and ALP levels. None of the ALP-associated SNPs were associated with other liver tests, suggesting intestine and/or bone specificity. The mechanisms underlying the associations may involve cis- or trans-transcriptional effects (some of the identified variants were associated with mRNA transcription in human liver or lymphoblastoid cells), dysfunction of the encoded proteins (caused by missense variations at the functional domains), or other unknown pathways. These findings may help in the interpretation of liver-enzyme tests and provide candidate genes for liver diseases of viral, metabolic, autoimmune, or toxic origin. The specific associations with ALP levels may point to genes for bone or intestinal diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5×10(-8)), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Atazanavir-associated hyperbilirubinemia can cause premature discontinuation of atazanavir and avoidance of its initial prescription. We used genomewide genotyping and clinical data to characterize determinants of atazanavir pharmacokinetics and hyperbilirubinemia in AIDS Clinical Trials Group protocol A5202. METHODS: Plasma atazanavir pharmacokinetics and indirect bilirubin concentrations were characterized in HIV-1-infected patients randomized to atazanavir/ritonavir-containing regimens. A subset had genomewide genotype data available. RESULTS: Genomewide assay data were available from 542 participants, of whom 475 also had data on estimated atazanavir clearance and relevant covariates available. Peak bilirubin concentration and relevant covariates were available for 443 participants. By multivariate analysis, higher peak on-treatment bilirubin levels were found to be associated with the UGT1A1 rs887829 T allele (P=6.4×10), higher baseline hemoglobin levels (P=4.9×10), higher baseline bilirubin levels (P=6.7×10), and slower plasma atazanavir clearance (P=8.6×10). For peak bilirubin levels greater than 3.0 mg/dl, the positive predictive value of a baseline bilirubin level of 0.5 mg/dl or higher with hemoglobin concentrations of 14 g/dl or higher was 0.51, which increased to 0.85 with rs887829 TT homozygosity. For peak bilirubin levels of 3.0 mg/dl or lower, the positive predictive value of a baseline bilirubin level less than 0.5 mg/dl with a hemoglobin concentration less than 14 g/dl was 0.91, which increased to 0.96 with rs887829 CC homozygosity. No polymorphism predicted atazanavir pharmacokinetics at genomewide significance. CONCLUSION: Atazanavir-associated hyperbilirubinemia is best predicted by considering UGT1A1 genotype, baseline bilirubin level, and baseline hemoglobin level in combination. Use of ritonavir as a pharmacokinetic enhancer may have abrogated genetic associations with atazanavir pharmacokinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) are designed to identify the portion of single-nucleotide polymorphisms (SNPs) in genome sequences associated with a complex trait. Strategies based on the gene list enrichment concept are currently applied for the functional analysis of GWAS, according to which a significant overrepresentation of candidate genes associated with a biological pathway is used as a proxy to infer overrepresentation of candidate SNPs in the pathway. Here we show that such inference is not always valid and introduce the program SNP2GO, which implements a new method to properly test for the overrepresentation of candidate SNPs in biological pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Differences in the distribution of genotypes between individuals of the same ethnicity are an important confounder factor commonly undervalued in typical association studies conducted in radiogenomics. Objective: To evaluate the genotypic distribution of SNPs in a wide set of Spanish prostate cancer patients for determine the homogeneity of the population and to disclose potential bias. Design, Setting, and Participants: A total of 601 prostate cancer patients from Andalusia, Basque Country, Canary and Catalonia were genotyped for 10 SNPs located in 6 different genes associated to DNA repair: XRCC1 (rs25487, rs25489, rs1799782), ERCC2 (rs13181), ERCC1 (rs11615), LIG4 (rs1805388, rs1805386), ATM (rs17503908, rs1800057) and P53 (rs1042522). The SNP genotyping was made in a Biotrove OpenArrayH NT Cycler. Outcome Measurements and Statistical Analysis: Comparisons of genotypic and allelic frequencies among populations, as well as haplotype analyses were determined using the web-based environment SNPator. Principal component analysis was made using the SnpMatrix and XSnpMatrix classes and methods implemented as an R package. Non-supervised hierarchical cluster of SNP was made using MultiExperiment Viewer. Results and Limitations: We observed that genotype distribution of 4 out 10 SNPs was statistically different among the studied populations, showing the greatest differences between Andalusia and Catalonia. These observations were confirmed in cluster analysis, principal component analysis and in the differential distribution of haplotypes among the populations. Because tumor characteristics have not been taken into account, it is possible that some polymorphisms may influence tumor characteristics in the same way that it may pose a risk factor for other disease characteristics. Conclusion: Differences in distribution of genotypes within different populations of the same ethnicity could be an important confounding factor responsible for the lack of validation of SNPs associated with radiation-induced toxicity, especially when extensive meta-analysis with subjects from different countries are carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A linkage between obesity-related phenotypes and the 2p21-23 locus has been reported previously. The urocortin (UCN) gene resides at this interval, and its protein decreases appetite behavior, suggesting that UCN may be a candidate gene for susceptibility to obesity. We localized the UCN gene by radiation hybrid mapping, and the surrounding markers were genotyped in a collection of French families. Evidence for linkage was shown between the marker D2S165 and leptin levels (LOD score, 1.34; P = 0.006) and between D2S2247 and the z-score of body mass index (LOD score, 1.829; P = 0.0019). The gene was screened for SNPs in 96 obese patients. Four new variants were established. Two single nucleotide polymorphisms were located in the promoter (-535 A-->G, -286 G-->A), one in intron 1 (+31 C-->G), and one in the 3'-untranslated region (+34 C-->T). Association studies in cohorts of 722 unrelated obese and 381 control subjects and transmission disequilibrium tests, performed for the two frequent promoter polymorphisms, in 120 families (894 individuals) showed that no association was present between these variants and obesity, obesity-related phenotypes, and diabetes. Thus, our analyses of the genetic variations of the UCN gene suggest that, at least in French Caucasians, they do not represent a major cause of obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) are conducted with the promise to discover novel genetic variants associated with diverse traits. For most traits, associated markers individually explain just a modest fraction of the phenotypic variation, but their number can well be in the hundreds. We developed a maximum likelihood method that allows us to infer the distribution of associated variants even when many of them were missed by chance. Compared to previous approaches, the novelty of our method is that it (a) does not require having an independent (unbiased) estimate of the effect sizes; (b) makes use of the complete distribution of P-values while allowing for the false discovery rate; (c) takes into account allelic heterogeneity and the SNP pruning strategy. We applied our method to the latest GWAS meta-analysis results of the GIANT consortium. It revealed that while the explained variance of genome-wide (GW) significant SNPs is around 1% for waist-hip ratio (WHR), the observed P-values provide evidence for the existence of variants explaining 10% (CI=[8.5-11.5%]) of the phenotypic variance in total. Similarly, the total explained variance likely to exist for height is estimated to be 29% (CI=[28-30%]), three times higher than what the observed GW significant SNPs give rise to. This methodology also enables us to predict the benefit of future GWA studies that aim to reveal more associated genetic markers via increased sample size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic variants influence the risk to develop certain diseases or give rise to differences in drug response. Recent progresses in cost-effective, high-throughput genome-wide techniques, such as microarrays measuring Single Nucleotide Polymorphisms (SNPs), have facilitated genotyping of large clinical and population cohorts. Combining the massive genotypic data with measurements of phenotypic traits allows for the determination of genetic differences that explain, at least in part, the phenotypic variations within a population. So far, models combining the most significant variants can only explain a small fraction of the variance, indicating the limitations of current models. In particular, researchers have only begun to address the possibility of interactions between genotypes and the environment. Elucidating the contributions of such interactions is a difficult task because of the large number of genetic as well as possible environmental factors.In this thesis, I worked on several projects within this context. My first and main project was the identification of possible SNP-environment interactions, where the phenotypes were serum lipid levels of patients from the Swiss HIV Cohort Study (SHCS) treated with antiretroviral therapy. Here the genotypes consisted of a limited set of SNPs in candidate genes relevant for lipid transport and metabolism. The environmental variables were the specific combinations of drugs given to each patient over the treatment period. My work explored bioinformatic and statistical approaches to relate patients' lipid responses to these SNPs, drugs and, importantly, their interactions. The goal of this project was to improve our understanding and to explore the possibility of predicting dyslipidemia, a well-known adverse drug reaction of antiretroviral therapy. Specifically, I quantified how much of the variance in lipid profiles could be explained by the host genetic variants, the administered drugs and SNP-drug interactions and assessed the predictive power of these features on lipid responses. Using cross-validation stratified by patients, we could not validate our hypothesis that models that select a subset of SNP-drug interactions in a principled way have better predictive power than the control models using "random" subsets. Nevertheless, all models tested containing SNP and/or drug terms, exhibited significant predictive power (as compared to a random predictor) and explained a sizable proportion of variance, in the patient stratified cross-validation context. Importantly, the model containing stepwise selected SNP terms showed higher capacity to predict triglyceride levels than a model containing randomly selected SNPs. Dyslipidemia is a complex trait for which many factors remain to be discovered, thus missing from the data, and possibly explaining the limitations of our analysis. In particular, the interactions of drugs with SNPs selected from the set of candidate genes likely have small effect sizes which we were unable to detect in a sample of the present size (<800 patients).In the second part of my thesis, I performed genome-wide association studies within the Cohorte Lausannoise (CoLaus). I have been involved in several international projects to identify SNPs that are associated with various traits, such as serum calcium, body mass index, two-hour glucose levels, as well as metabolic syndrome and its components. These phenotypes are all related to major human health issues, such as cardiovascular disease. I applied statistical methods to detect new variants associated with these phenotypes, contributing to the identification of new genetic loci that may lead to new insights into the genetic basis of these traits. This kind of research will lead to a better understanding of the mechanisms underlying these pathologies, a better evaluation of disease risk, the identification of new therapeutic leads and may ultimately lead to the realization of "personalized" medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Genetic epidemiology is focused on the study of the genetic causes that determine health and diseases in populations. To achieve this goal a common strategy is to explore differences in genetic variability between diseased and nondiseased individuals. Usual markers of genetic variability are single nucleotide polymorphisms (SNPs) which are changes in just one base in the genome. The usual statistical approach in genetic epidemiology study is a marginal analysis, where each SNP is analyzed separately for association with the phenotype. Motivation. It has been observed, that for common diseases the single-SNP analysis is not very powerful for detecting genetic causing variants. In this work, we consider Gene Set Analysis (GSA) as an alternative to standard marginal association approaches. GSA aims to assess the overall association of a set of genetic variants with a phenotype and has the potential to detect subtle effects of variants in a gene or a pathway that might be missed when assessed individually. Objective. We present a new optimized implementation of a pair of gene set analysis methodologies for analyze the individual evidence of SNPs in biological pathways. We perform a simulation study for exploring the power of the proposed methodologies in a set of scenarios with different number of causal SNPs under different effect sizes. In addition, we compare the results with the usual single-SNP analysis method. Moreover, we show the advantage of using the proposed gene set approaches in the context of an Alzheimer disease case-control study where we explore the Reelin signal pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Differences in the distribution of genotypes between individuals of the same ethnicity are an important confounder factor commonly undervalued in typical association studies conducted in radiogenomics. Objective: To evaluate the genotypic distribution of SNPs in a wide set of Spanish prostate cancer patients for determine the homogeneity of the population and to disclose potential bias. Design, Setting, and Participants: A total of 601 prostate cancer patients from Andalusia, Basque Country, Canary and Catalonia were genotyped for 10 SNPs located in 6 different genes associated to DNA repair: XRCC1 (rs25487, rs25489, rs1799782), ERCC2 (rs13181), ERCC1 (rs11615), LIG4 (rs1805388, rs1805386), ATM (rs17503908, rs1800057) and P53 (rs1042522). The SNP genotyping was made in a Biotrove OpenArrayH NT Cycler. Outcome Measurements and Statistical Analysis: Comparisons of genotypic and allelic frequencies among populations, as well as haplotype analyses were determined using the web-based environment SNPator. Principal component analysis was made using the SnpMatrix and XSnpMatrix classes and methods implemented as an R package. Non-supervised hierarchical cluster of SNP was made using MultiExperiment Viewer. Results and Limitations: We observed that genotype distribution of 4 out 10 SNPs was statistically different among the studied populations, showing the greatest differences between Andalusia and Catalonia. These observations were confirmed in cluster analysis, principal component analysis and in the differential distribution of haplotypes among the populations. Because tumor characteristics have not been taken into account, it is possible that some polymorphisms may influence tumor characteristics in the same way that it may pose a risk factor for other disease characteristics. Conclusion: Differences in distribution of genotypes within different populations of the same ethnicity could be an important confounding factor responsible for the lack of validation of SNPs associated with radiation-induced toxicity, especially when extensive meta-analysis with subjects from different countries are carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated concentrations of albumin in the urine, albuminuria, are a hallmark of diabetic kidney disease and are associated with an increased risk for end-stage renal disease and cardiovascular events. To gain insight into the pathophysiological mechanisms underlying albuminuria, we conducted meta-analyses of genome-wide association studies and independent replication in up to 5,825 individuals of European ancestry with diabetes and up to 46,061 without diabetes, followed by functional studies. Known associations of variants in CUBN, encoding cubilin, with the urinary albumin-to-creatinine ratio (UACR) were confirmed in the overall sample (P = 2.4 × 10(-10)). Gene-by-diabetes interactions were detected and confirmed for variants in HS6ST1 and near RAB38/CTSC. Single nucleotide polymorphisms at these loci demonstrated a genetic effect on UACR in individuals with but not without diabetes. The change in the average UACR per minor allele was 21% for HS6ST1 (P = 6.3 × 10(-7)) and 13% for RAB38/CTSC (P = 5.8 × 10(-7)). Experiments using streptozotocin-induced diabetic Rab38 knockout and control rats showed higher urinary albumin concentrations and reduced amounts of megalin and cubilin at the proximal tubule cell surface in Rab38 knockout versus control rats. Relative expression of RAB38 was higher in tubuli of patients with diabetic kidney disease compared with control subjects. The loci identified here confirm known pathways and highlight novel pathways influencing albuminuria.