932 resultados para Genome editing
Resumo:
Melanoma has historically been refractive to traditional therapeutic approaches. As such, the development of novel drug strategies has been needed to improve rates of overall survival in patients with melanoma, particularly those with late stage or disseminated disease. Recent success with molecularly based targeted drugs, such as Vemurafenib in BRAF-mutant melanomas, has now made “personalized medicine” a reality within some oncology clinics. In this sense, tailored drugs can be administered to patients according to their tumor “mutation profiles.” The success of these drug strategies, in part, can be attributed to the identification of the genetic mechanisms responsible for the development and progression of metastatic melanoma. Recently, the advances in sequencing technology have allowed for comprehensive mutation analysis of tumors and have led to the identification of a number of genes involved in the etiology of metastatic melanoma. As the methodology and costs associated with next-generation sequencing continue to improve, this technology will be rapidly adopted into routine clinical oncology practices and will significantly impact on personalized therapy. This review summarizes current and emerging molecular targets in metastatic melanoma, discusses the potential application of next-generation sequencing within the paradigm of personalized medicine, and describes the current limitations for the adoption of this technology within the clinic.
Resumo:
We report that tumor cells devoid of their mitochondrial genome (mtDNA) show delayed tumor growth and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory supercomplexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest a novel pathophysiological process for overcoming mtDNA damage and support the notion of high plasticity of malignant cells.
Resumo:
We present the complete mitochondrial genome (accession number: LK995454) of an iconic Australian species, the eastern grey kangaroo (Macropus giganteus). The mitogenomic organization is consistent with other marsupials, encoding 13 protein-coding genes, 22 tRNA genes, 2 ribosomal RNA genes, an origin of light strand replication and a control region or Dloop. No repetitive sequences were detected in the control region. The M. giganteus mitogenome exemplifies a combination of tRNA gene order and structural peculiarities that appear to be unique to marsupials. We present a maximum likelihood phylogeny based on complete mitochondrial protein and RNA coding sequences that confirms the phylogenetic position of the grey kangaroo among macropodids.
Resumo:
RNA editing is a biological phenomena that alters nascent RNA transcripts by insertion, deletion and/or substitution of one or a few nucleotides. It is ubiquitous in all kingdoms of life and in viruses. The predominant editing event in organisms with a developed central nervous system is Adenosine to Inosine deamination. Inosine is recognized as Guanosine by the translational machinery and reverse-transcriptase. In primates, RNA editing occurs frequently in transcripts from repetitive regions of the genome. In humans, more than 500,000 editing instances have been identified, by applying computational pipelines on available ESTs and high-throughput sequencing data, and by using chemical methods. However, the functions of only a small number of cases have been studied thoroughly. RNA editing instances have been found to have roles in peptide variants synthesis by non-synonymous codon substitutions, transcript variants by alterations in splicing sites and gene silencing by miRNAs sequence modifications. We established the Database of RNA EDiting (DARNED) to accommo-date the reference genomic coordinates of substitution editing in human, mouse and fly transcripts from published literatures, with additional information on edited genomic coordinates collected from various databases e.g. UCSC, NCBI. DARNED contains mostly Adenosine to Inosine editing and allows searches based on genomic region, gene ID, and user provided sequence. The Database is accessible at http://darned.ucc.ie RNA editing instances in coding region are likely to result in recoding in protein synthesis. This encouraged me to focus my research on the occurrences of RNA editing specific CDS and non-Alu exonic regions. By applying various filters on discrepancies between available ESTs and their corresponding reference genomic sequences, putative RNA editing candidates were identified. High-throughput sequencing was used to validate these candidates. All predicted coordinates appeared to be either SNPs or unedited.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The partially overlapping ORF P and ORF O are located within the domains of the herpes simplex virus 1 genome transcribed during latency. Earlier studies have shown that ORF P is repressed by infected cell protein 4 (ICP4), the major viral regulatory protein, binding to its cognate site at the transcription initiation site of ORF P. The ORF P protein binds to p32, a component of the ASF/SF2 alternate splicing factors; in cells infected with a recombinant virus in which ORF P was derepressed there was a significant decrease in the expression of products of key regulatory genes containing introns. We report that (i) the expression of ORF O is repressed during productive infection by the same mechanism as that determining the expression of ORF P; (ii) in cells infected at the nonpermissive temperature for ICP4, ORF O protein is made in significantly lower amounts than the ORF P protein; (iii) the results of insertion of a sequence encoding 20 amino acids between the putative initiator methionine codons of ORF O and ORF P suggest that ORF O initiates at the methionine codon of ORF P and that the synthesis of ORF O results from frameshift or editing of its RNA; and (iv) glutathione S-transferase–ORF O fusion protein bound specifically ICP4 and precluded its binding to its cognate site on DNA in vitro. These and earlier results indicate that ORF P and ORF O together have the capacity to reduce the synthesis or block the expression of regulatory proteins essential for viral replication in productive infection.
Resumo:
On the basis of the sequence of the mitochondrial genome in the flowering plant Arabidopsis thaliana, RNA editing events were systematically investigated in the respective RNA population. A total of 456 C to U, but no U to C, conversions were identified exclusively in mRNAs, 441 in ORFs, 8 in introns, and 7 in leader and trailer sequences. No RNA editing was seen in any of the rRNAs or in several tRNAs investigated for potential mismatch corrections. RNA editing affects individual coding regions with frequencies varying between 0 and 18.9% of the codons. The predominance of RNA editing events in the first two codon positions is not related to translational decoding, because it is not correlated with codon usage. As a general effect, RNA editing increases the hydrophobicity of the coded mitochondrial proteins. Concerning the selection of RNA editing sites, little significant nucleotide preference is observed in their vicinity in comparison to unedited C residues. This sequence bias is, per se, not sufficient to specify individual C nucleotides in the total RNA population in Arabidopsis mitochondria.
Resumo:
Transcripts of typical dicot plant plastid genes undergo C→U RNA editing at approximately 30 locations, but there is no consensus sequence surrounding the C targets of editing. The cis-acting elements required for editing of the C located at tobacco rpoB editing site II were investigated by introducing translatable chimeric minigenes containing sequence –20 to +6 surrounding the C target of editing. When the –20 to +6 sequence specified by the homologous region present in the black pine chloroplast genome was incorporated, virtually no editing of the transcripts occurred in transgenic tobacco plastids. Nucleotides that differ between the black pine and tobacco sequence were tested for their role in C→U editing by designing chimeric genes containing one or more of these divergent nucleotides. Surprisingly, the divergent nucleotide that had the strongest negative effect on editing of the minigene transcript was located –20 nt 5′ to the C target of editing. Expression of transgene transcripts carrying the 27 nt sequence did not affect the editing extent of the endogenous rpoB transcripts, even though the chimeric transcripts were much more abundant than those of the endogenous gene. In plants carrying a 93 nt rpoB editing site sequence, transgene transcripts accumulated to a level three times greater than transgene transcripts in the plants carrying the 27 nt rpoB editing sites and resulted in editing of the endogenous transcripts from 100 to 50%. Both a lower affinity of the 27 nt site for a trans-acting factor and lower abundance of the transcript could explain why expression of minigene transcripts containing the 27 nt sequence did not affect endogenous editing.
Resumo:
The phenomenon of RNA editing has been found to occur in chloroplasts of several angiosperm plants. Comparative analysis of the entire nucleotide sequence of a gymnosperm [Pinus thunbergii (black pine)] chloroplast genome allowed us to predict several potential editing sites in its transcripts. Forty-nine such sites from 14 genes/ORFs were analyzed by sequencing both cDNAs from the transcripts and the corresponding chloroplast DNA regions, and 26 RNA editing sites were identified in the transcripts from 12 genes/ORFs, indicating that chloroplast RNA editing is not restricted to angiosperms but occurs in the gymnosperm, too. All the RNA editing events are C-to-U conversions; however, many new codon substitutions and creation of stop codons that have not so far been reported in angiosperm chloroplasts were observed. The most striking is that two editing events result in the creation of an initiation and a stop codon within a single transcript, leading to the formation of a new reading frame of 33 codons. The predicted product is highly homologous to that deduced from the ycf7 gene (ORF31), which is conserved in the chloroplast genomes of many other plant species.
Resumo:
Arginase 1 deficiency, a urea cycle disorder resulting from an inability of the body to convert arginine into urea, results in hyperargininemia and sporadic episodes of hyperammonemia. Arginase 1 deficiency can lead to a range of developmental disorders and progressive spastic diplegia in children, and current therapeutic options are limited. Clustered regularly interspaced short palindromic repeat (CRISPR) /CRISPR associated protein (Cas) 9 gene editing systems serve as a novel means of treating genetic disorders such as Arginase 1 (ARG1) deficiency, and must be thoroughly examined to determine their curative capabilities. In these experiments numerous guide RNAs and CRISPR/Cas9 systems targeting the ARG1 gene were designed and observed by heteroduplex assay for their targeting capabilities and cleavage efficiencies in multiple cell lines. The CRISPR/Cas9 system utilized in these experiments, along with a panel of guide RNAs targeting various locations in the arginase 1 gene, successfully produced targeted cleavage in HEK293, MCF7, A549, K562, HeLa, and HepG2 cells; however, targeted cleavage in human dermal fibroblasts, blood outgrowth endothelial cells, and induced pluripotent stem cells was not observed. Additionally, a CRISPR/Cas system involving partially inactivated Cas9 was capable of producing targeted DNA cleavage in intron 1 of ARG1, while a Cas protein termed Cpf1 was incapable of producing targeted cleavage. These results indicate a complex set of variables determining the CRISPR/Cas9 systems’ capabilities in the cell lines and primary cells tested. By examining epigenetic factors and alternative CRISPR/Cas9 gene targeting systems, the CRISPR/Cas9 system can be more thoroughly considered in its ability to act as a means towards editing the genome of arginase 1-deficient individuals.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08