957 resultados para Genetic programming (Computer science)
Resumo:
In computer vision, training a model that performs classification effectively is highly dependent on the extracted features, and the number of training instances. Conventionally, feature detection and extraction are performed by a domain-expert who, in many cases, is expensive to employ and hard to find. Therefore, image descriptors have emerged to automate these tasks. However, designing an image descriptor still requires domain-expert intervention. Moreover, the majority of machine learning algorithms require a large number of training examples to perform well. However, labelled data is not always available or easy to acquire, and dealing with a large dataset can dramatically slow down the training process. In this paper, we propose a novel Genetic Programming based method that automatically synthesises a descriptor using only two training instances per class. The proposed method combines arithmetic operators to evolve a model that takes an image and generates a feature vector. The performance of the proposed method is assessed using six datasets for texture classification with different degrees of rotation, and is compared with seven domain-expert designed descriptors. The results show that the proposed method is robust to rotation, and has significantly outperformed, or achieved a comparable performance to, the baseline methods.
Resumo:
Tuesday 22nd April 2014 Speaker(s): Sue Sentance Organiser: Leslie Carr Time: 22/04/2014 15:00-16:00 Location: B32/3077 File size: 698 Mb Abstract Until recently, "computing" education in English schools mainly focused on developing general Digital Literacy and Microsoft Office skills. As of this September, a new curriculum comes into effect that provides a strong emphasis on computation and programming. This change has generated some controversy in the news media (4-year-olds being forced to learn coding! boss of the government’s coding education initiative cannot code shock horror!!!!) and also some concern in the teaching profession (how can we possibly teach programming when none of the teachers know how to program)? Dr Sue Sentance will explain the work of Computing At School, a part of the BCS Academy, in galvanising universities to help teachers learn programming and other computing skills. Come along and find out about the new English Computing Revolution - How will your children and your schools be affected? - How will our University intake change? How will our degrees have to change? - What is happening to the national perception of Computer Science?
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the realm of computer programming, the experience of writing a program is used to reinforce concepts and evaluate ability. This research uses three case studies to evaluate the introduction of testing through Kolb's Experiential Learning Model (ELM). We then analyze the impact of those testing experiences to determine methods for improving future courses. The first testing experience that students encounter are unit test reports in their early courses. This course demonstrates that automating and improving feedback can provide more ELM iterations. The JUnit Generation (JUG) tool also provided a positive experience for the instructor by reducing the overall workload. Later, undergraduate and graduate students have the opportunity to work together in a multi-role Human-Computer Interaction (HCI) course. The interactions use usability analysis techniques with graduate students as usability experts and undergraduate students as design engineers. Students get experience testing the user experience of their product prototypes using methods varying from heuristic analysis to user testing. From this course, we learned the importance of the instructors role in the ELM. As more roles were added to the HCI course, a desire arose to provide more complete, quality assured software. This inspired the addition of unit testing experiences to the course. However, we learned that significant preparations must be made to apply the ELM when students are resistant. The research presented through these courses was driven by the recognition of a need for testing in a Computer Science curriculum. Our understanding of the ELM suggests the need for student experience when being introduced to testing concepts. We learned that experiential learning, when appropriately implemented, can provide benefits to the Computer Science classroom. When examined together, these course-based research projects provided insight into building strong testing practices into a curriculum.
Resumo:
Originally presented as the author's thesis (M.A.), University of Illinois at Urbana-Champaign.
Resumo:
Banzhaf explores the concept of emergence and how and where it happens in genetic programming [1]. Here we consider the question: what shall we do with it? We argue that given our ultimate goal to produce genetic programming systems that solve new and difficult problems, we should take advantage of emergence to get closer to this goal. © 2013 Springer Science+Business Media New York.
Resumo:
Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding and performance of computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: (1) identifying sources of computer science students’ difficulties with proofs by induction, and (2) developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.
Resumo:
Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding of and performance with computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: 1. identifying sources of computer science students’ difficulties with proofs by induction, and 2. developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.
Resumo:
There is a widespread perception among staff in Computer Science that plagiarism is a major problem particularly in the form of collusion in programming exercises. While departments often make use of electronic detection measures, the time consumed prosecuting plagiarism offences remains a problem. As a result departments continue to seek ways to reduce the amount of plagiarism and collusion that occurs. This paper reports the findings of a questionnaire based study which attempted to assess the students' attitudes to the issues involved in the hope that such an understanding might result in practical measures for minimizing the problem. The study revealed that while students did understand the definition of plagiarism in its most extreme cases they were often confused about less clear-cut situations. Changes in the previous experience of incoming students meeting modules originally designed on the assumption that students already had some programming background and were equipped for self-directed study would also appear to be a contributory factor in the extent of collusion in programming exercises.
Resumo:
Computer Science is a subject which has difficulty in marketing itself. Further, pinning down a standard curriculum is difficult-there are many preferences which are hard to accommodate. This paper argues the case that part of the problem is the fact that, unlike more established disciplines, the subject does not clearly distinguish the study of principles from the study of artifacts. This point was raised in Curriculum 2001 discussions, and debate needs to start in good time for the next curriculum standard. This paper provides a starting point for debate, by outlining a process by which principles and artifacts may be separated, and presents a sample curriculum to illustrate the possibilities. This sample curriculum has some positive points, though these positive points are incidental to the need to start debating the issue. Other models, with a less rigorous ordering of principles before artifacts, would still gain from making it clearer whether a specific concept was fundamental, or a property of a specific technology. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Recaí sob a responsabilidade da Marinha Portuguesa a gestão da Zona Económica Exclusiva de Portugal, assegurando a sua segurança da mesma face a atividades criminosas. Para auxiliar a tarefa, é utilizado o sistema Oversee, utilizado para monitorizar a posição de todas as embarcações presentes na área afeta, permitindo a rápida intervenção da Marinha Portuguesa quando e onde necessário. No entanto, o sistema necessita de transmissões periódicas constantes originadas nas embarcações para operar corretamente – casos as transmissões sejam interrompidas, deliberada ou acidentalmente, o sistema deixa de conseguir localizar embarcações, dificultando a intervenção da Marinha. A fim de colmatar esta falha, é proposto adicionar ao sistema Oversee a capacidade de prever as posições futuras de uma embarcação com base no seu trajeto até à cessação das transmissões. Tendo em conta os grandes volumes de dados gerados pelo sistema (históricos de posições), a área de Inteligência Artificial apresenta uma possível solução para este problema. Atendendo às necessidades de resposta rápida do problema abordado, o algoritmo de Geometric Semantic Genetic Programming baseado em referências de Vanneschi et al. apresenta-se como uma possível solução, tendo já produzido bons resultados em problemas semelhantes. O presente trabalho de tese pretende integrar o algoritmo de Geometric Semantic Genetic Programming desenvolvido com o sistema Oversee, a fim de lhe conceder capacidades preditivas. Adicionalmente, será realizado um processo de análise de desempenho a fim de determinar qual a ideal parametrização do algoritmo. Pretende-se com esta tese fornecer à Marinha Portuguesa uma ferramenta capaz de auxiliar o controlo da Zona Económica Exclusiva Portuguesa, permitindo a correta intervenção da Marinha em casos onde o atual sistema não conseguiria determinar a correta posição da embarcação em questão.
Resumo:
As the world becomes more technologically advanced and economies become globalized, computer science evolution has become faster than ever before. With this evolution and globalization come the need for sustainable university curricula that adequately prepare graduates for life in the industry. Additionally, behavioural skills or “soft” skills have become just as important as technical abilities and knowledge or “hard” skills. The objective of this study was to investigate the current skill gap that exists between computer science university graduates and actual industry needs as well as the sustainability of current computer science university curricula by conducting a systematic literature review of existing publications on the subject as well as a survey of recently graduated computer science students and their work supervisors. A quantitative study was carried out with respondents from six countries, mainly Finland, 31 of the responses came from recently graduated computer science professionals and 18 from their employers. The observed trends suggest that a skill gap really does exist particularly with “soft” skills and that many companies are forced to provide additional training to newly graduated employees if they are to be successful at their jobs.
Resumo:
This thesis will introduce a new strongly typed programming language utilizing Self types, named Win--*Foy, along with a suitable user interface designed specifically to highlight language features. The need for such a programming language is based on deficiencies found in programming languages that support both Self types and subtyping. Subtyping is a concept that is taken for granted by most software engineers programming in object-oriented languages. Subtyping supports subsumption but it does not support the inheritance of binary methods. Binary methods contain an argument of type Self, the same type as the object itself, in a contravariant position, i.e. as a parameter. There are several arguments in favour of introducing Self types into a programming language (11. This rationale led to the development of a relation that has become known as matching [4, 5). The matching relation does not support subsumption, however, it does support the inheritance of binary methods. Two forms of matching have been proposed (lJ. Specifically, these relations are known as higher-order matching and I-bound matching. Previous research on these relations indicates that the higher-order matching relation is both reflexive and transitive whereas the f-bound matching is reflexive but not transitive (7]. The higher-order matching relation provides significant flexibility regarding inheritance of methods that utilize or return values of the same type. This flexibility, in certain situations, can restrict the programmer from defining specific classes and methods which are based on constant values [21J. For this reason, the type This is used as a second reference to the type of the object that cannot, contrary to Self, be specialized in subclasses. F-bound matching allows a programmer to define a function that will work for all types of A', a subtype of an upper bound function of type A, with the result type being dependent on A'. The use of parametric polymorphism in f-bound matching provides a connection to subtyping in object-oriented languages. This thesis will contain two main sections. Firstly, significant details concerning deficiencies of the subtype relation and the need to introduce higher-order and f-bound matching relations into programming languages will be explored. Secondly, a new programming language named Win--*Foy Functional Object-Oriented Programming Language has been created, along with a suitable user interface, in order to facilitate experimentation by programmers regarding the matching relation. The construction of the programming language and the user interface will be explained in detail.