982 resultados para Genetic Screening


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The MFG test is a family-based association test that detects genetic effects contributing to disease in offspring, including offspring allelic effects, maternal allelic effects and MFG incompatibility effects. Like many other family-based association tests, it assumes that the offspring survival and the offspring-parent genotypes are conditionally independent provided the offspring is affected. However, when the putative disease-increasing locus can affect another competing phenotype, for example, offspring viability, the conditional independence assumption fails and these tests could lead to incorrect conclusions regarding the role of the gene in disease. We propose the v-MFG test to adjust for the genetic effects on one phenotype, e.g., viability, when testing the effects of that locus on another phenotype, e.g., disease. Using genotype data from nuclear families containing parents and at least one affected offspring, the v-MFG test models the distribution of family genotypes conditional on offspring phenotypes. It simultaneously estimates genetic effects on two phenotypes, viability and disease. Simulations show that the v-MFG test produces accurate genetic effect estimates on disease as well as on viability under several different scenarios. It generates accurate type-I error rates and provides adequate power with moderate sample sizes to detect genetic effects on disease risk when viability is reduced. We demonstrate the v-MFG test with HLA-DRB1 data from study participants with rheumatoid arthritis (RA) and their parents, we show that the v-MFG test successfully detects an MFG incompatibility effect on RA while simultaneously adjusting for a possible viability loss.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The overall objective of this thesis is to integrate a number of micro/nanotechnologies into integrated cartridge type systems to implement such biochemical protocols. Instrumentation and systems were developed to interface such cartridge systems: (i) implementing microfluidic handling, (ii) executing thermal control during biochemical protocols and (iii) detection of biomolecules associated with inherited or infectious disease. This system implements biochemical protocols for DNA extraction, amplification and detection. A digital microfluidic chip (ElectroWetting on Dielectric) manipulated droplets of sample and reagent implementing sample preparation protocols. The cartridge system also integrated a planar magnetic microcoil device to generate local magnetic field gradients, manipulating magnetic beads. For hybridisation detection a fluorescence microarray, screening for mutations associated with CFTR gene is printed on a waveguide surface and integrated within the cartridge. A second cartridge system was developed to implement amplification and detection screening for DNA associated with disease-causing pathogens e.g. Escherichia coli. This system incorporates (i) elastomeric pinch valves isolating liquids during biochemical protocols and (ii) a silver nanoparticle microarray for fluorescent signal enhancement, using localized surface plasmon resonance. The microfluidic structures facilitated the sample and reagent to be loaded and moved between chambers with external heaters implementing thermal steps for nucleic acid amplification and detection. In a technique allowing probe DNA to be immobilised within a microfluidic system using (3D) hydrogel structures a prepolymer solution containing probe DNA was formulated and introduced into the microfluidic channel. Photo-polymerisation was undertaken forming 3D hydrogel structures attached to the microfluidic channel surface. The prepolymer material, poly-ethyleneglycol (PEG), was used to form hydrogel structures containing probe DNA. This hydrogel formulation process was fast compared to conventional biomolecule immobilization techniques and was also biocompatible with the immobilised biomolecules, as verified by on-chip hybridisation assays. This process allowed control over hydrogel height growth at the micron scale.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND:
The genetic heterogeneity of many Mendelian disorders, such as retinitis pigmentosa which results from mutations in over 40 genes, is a major obstacle to obtaining a molecular diagnosis in clinical practice. Targeted high-throughput DNA sequencing offers a potential solution and was used to develop a molecular diagnostic screen for patients with retinitis pigmentosa.
METHODS:
A custom sequence capture array was designed to target the coding regions of all known retinitis pigmentosa genes and used to enrich these sequences from DNA samples of five patients. Enriched DNA was subjected to high-throughput sequencing singly or in pools, and sequence variants were identified by alignment of up to 10 million reads per sample to the normal reference sequence. Potential pathogenicity was assessed by functional predictions and frequency in controls.
RESULTS AND CONCLUSIONS:
Known homozygous PDE6B and compound heterozygous CRB1 mutations were detected in two patients. A novel homozygous missense mutation (c.2957A?T; p.N986I) in the cyclic nucleotide gated channel ß1 (CNGB1) gene predicted to have a deleterious effect and absent in 720 control chromosomes was detected in one case in which conventional genetic screening had failed to detect mutations. The detection of known and novel retinitis pigmentosa mutations in this study establishes high-throughput DNA sequencing with DNA pooling as an effective diagnostic tool for heterogeneous genetic diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The bare-faced curassow (Crax fasciolata) is a large Neotropical bird that suffers anthropogenic pressure across much of its range. A captive population is maintained for conservation management, although there has been no genetic screening of stocks. Based on the six microsatellite markers developed for Crax globulosa, the genetic variability of C. fasciolata and possible differences between a wild and a captive population were investigated. Only three loci were polymorphic, with a total of 27 alleles. More than half of these alleles were private to the wild (n = 8) or captive (n = 7) populations. Significant deviations from Hardy-Weinberg equilibrium were restricted to the captive population. Despite the number of private alleles, genetic drift has probably promoted differentiation between populations. Our results indicate that wild C. fasciolata populations are genetically impoverished and structured, but species-specific microsatellite markers will be necessary for a more reliable assessment of the species` genetic diversity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mitochondrial DNA (mtDNA) analysis is usually a last resort in routine forensic DNA casework. However, it has become a powerful tool for the analysis of highly degraded samples or samples containing too little or no nuclear DNA, such as old bones and hair shafts. The gold standard methodology still constitutes the direct sequencing of polymerase chain reaction (PCR) products or cloned amplicons from the HVS-1 and HVS-2 (hypervariable segment) control region segments. Identifications using mtDNA are time consuming, expensive and can be very complex, depending on the amount and nature of the material being tested. The main goal of this work is to develop a less labour-intensive and less expensive screening method for mtDNA analysis, in order to aid in the exclusion of non-matching samples and as a presumptive test prior to final confirmatory DNA sequencing. We have selected 14 highly discriminatory single nucleotide polymorphisms (SNPs) based on simulations performed by Salas and Amigo (2010) [1] to be typed using SNaPShotTM (Applied Biosystems, Foster City, CA, USA). The assay was validated by typing more than 100 HVS-1/HVS-2 sequenced samples. No differences were observed between the SNP typing and DNA sequencing when results were compared, with the exception of allelic dropouts observed in a few haplotypes. Haplotype diversity simulations were performed using 172 mtDNA sequences representative of the Brazilian population and a score of 0.9794 was obtained when the 14 SNPs were used, showing that the theoretical prediction approach for the selection of highly discriminatory SNPs suggested by Salas and Amigo (2010) [1] was confirmed in the population studied. As the main goal of the work is to develop a screening assay to skip the sequencing of all samples in a particular case, a pair-wise comparison of the sequences was done using the selected SNPs. When both HVS-1/HVS-2 SNPs were used for simulations, at least two differences were observed in 93.2% of the comparisons performed. The assay was validated with casework samples. Results show that the method is straightforward and can be used for exclusionary purposes, saving time and laboratory resources. The assay confirms the theoretic prediction suggested by Salas and Amigo (2010) [1]. All forensic advantages, such as high sensitivity and power of discrimination, as also the disadvantages, such as the occurrence of allele dropouts, are discussed throughout the article. © 2013 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microsatellites, or simple sequence repeats (SSRs), have proven to be an important molecular marker in plant genetics and breeding research. The main strategies to obtain these markers can be through genomic DNA and from expressed sequence tags (ESTs) from mRNA/cDNA libraries. Genetic studies using microsatellite markers have increased rapidly because they can be highly polymorphic, codominant markers and they show heterozygous conserved sequences. Here, we describe a methodology to obtain microsatellite using the enrichment library of DNA genomic sequences. This method is highly efficient to development microsatellite markers especially in plants that do not have available ESTs or genome databases. This methodology has been used to enrich SSR marker libraries in Citrus spp., an important tool to genotype germplasm, to select zygotic hybrids, and to saturate genetic maps in breeding programs. © Springer Science+Business Media, LLC 2013.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Screening people without symptoms of disease is an attractive idea. Screening allows early detection of disease or elevated risk of disease, and has the potential for improved treatment and reduction of mortality. The list of future screening opportunities is set to grow because of the refinement of screening techniques, the increasing frequency of degenerative and chronic diseases, and the steadily growing body of evidence on genetic predispositions for various diseases. But how should we decide on the diseases for which screening should be done and on recommendations for how it should be implemented? We use the examples of prostate cancer and genetic screening to show the importance of considering screening as an ongoing population-based intervention with beneficial and harmful effects, and not simply the use of a test. Assessing whether screening should be recommended and implemented for any named disease is therefore a multi-dimensional task in health technology assessment. There are several countries that already use established processes and criteria to assess the appropriateness of screening. We argue that the Swiss healthcare system needs a nationwide screening commission mandated to conduct appropriate evidence-based evaluation of the impact of proposed screening interventions, to issue evidence-based recommendations, and to monitor the performance of screening programmes introduced. Without explicit processes there is a danger that beneficial screening programmes could be neglected and that ineffective, and potentially harmful, screening procedures could be introduced.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Molecular genetic testing is commonly used to confirm clinical diagnoses of inherited urea cycle disorders (UCDs); however, conventional mutation screenings encompassing only the coding regions of genes may not detect disease-causing mutations occurring in regulatory elements and introns. Microarray-based target enrichment and next-generation sequencing now allow more-comprehensive genetic screening. We applied this approach to UCDs and combined it with the use of DNA bar codes for more cost-effective, parallel analyses of multiple samples.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: We aimed to assess the value of a structured clinical assessment and genetic testing for refining the diagnosis of abacavir hypersensitivity reactions (ABC-HSRs) in a routine clinical setting. METHODS: We performed a diagnostic reassessment using a structured patient chart review in individuals who had stopped ABC because of suspected HSR. Two HIV physicians blinded to the human leukocyte antigen (HLA) typing results independently classified these individuals on a scale between 3 (ABC-HSR highly likely) and -3 (ABC-HSR highly unlikely). Scoring was based on symptoms, onset of symptoms and comedication use. Patients were classified as clinically likely (mean score > or =2), uncertain (mean score > or = -1 and < or = 1) and unlikely (mean score < or = -2). HLA typing was performed using sequence-based methods. RESULTS: From 131 reassessed individuals, 27 (21%) were classified as likely, 43 (33%) as unlikely and 61 (47%) as uncertain ABC-HSR. Of the 131 individuals with suspected ABC-HSR, 31% were HLA-B*5701-positive compared with 1% of 140 ABC-tolerant controls (P < 0.001). HLA-B*5701 carriage rate was higher in individuals with likely ABC-HSR compared with those with uncertain or unlikely ABC-HSR (78%, 30% and 5%, respectively, P < 0.001). Only six (7%) HLA-B*5701-negative individuals were classified as likely HSR after reassessment. CONCLUSIONS: HLA-B*5701 carriage is highly predictive of clinically diagnosed ABC-HSR. The high proportion of HLA-B*5701-negative individuals with minor symptoms among individuals with suspected HSR indicates overdiagnosis of ABC-HSR in the era preceding genetic screening. A structured clinical assessment and genetic testing could reduce the rate of inappropriate ABC discontinuation and identify individuals at high risk for ABC-HSR.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a cardiac channelopathy characterized by altered intracellular calcium handling resulting in ventricular arrhythmias and high risk of cardiac sudden death in young cases with normal structural hearts. Patients present with exertional syncope and the trademark dysrhythmia is polymorphic and/or bidirectional ventricular tachycardia during exercise or adrenergic stimulation. Early detection of CPVT is crucial because opportune medical intervention prevents sudden cardiac death. Mutations in the ryanodine receptor RYR2 explain nearly 70% of the CPVT cases and cause the autosomic dominant form of the disease. Mutations in calsequestrin 2 causes a recessive form and explain less than 5% of all cases. Genetic screening in CPVT, besides providing early detection of asymptomatic carriers at risk, has provided important insights in the mechanism underlying the disease. Mutational analysis of RYR2 has been a challenge due to the large size of the gene, 105 exons encoded for 4,967 amino-acids. In this review we analyze general concepts of the disease, differential diagnosis and strategies for genetic screening.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cancer therapy and tumor treatment remain unsolved puzzles. Genetic screening for tumor suppressor genes in Drosophila revealed the Hippo-signaling pathway as a kinase cascade consisting of five core components. Disrupting the pathway by deleting the main component genes breaks the balance of cell proliferation and apoptosis and results in epithelial tissue tumorigenesis. The pathway is therefore believed to be a tumor suppressor pathway. However, a corresponding role in mammals is yet to be determined. Our lab began to investigate the tumor suppression function of the potent mammalian Hippo pathway by putting floxed alleles into the mouse genome flanking the functional-domain-expressing exons in each component (Mst1, Mst2, Sav1, Lats1 and Lats2). These mice were then crossed with different cre-mouse lines to generate conditional knockout mice. Results indicate a ubiquitous tumor suppression function of these components, predominantly in the liver. A further liver specific analysis of the deletion mutation of these components, as well as the Yap/Taz double deletion mutation, reveals essential roles of the Hippo pathway in regulating hepatic quiescence and embryonic liver development. One of the key cellular mechanisms for the Hippo pathway’s involvement in these liver biological events is likely its cell cycle regulation function. Our work will help to develop potential therapeutic approaches for liver cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent decades antenatal screening has become one of the most routine procedure of pregnancy-follow up and the subject of hot debate in bioethics circles. In this paper the rationale behind doing antenatal screening and the actual and potential problems that it may cause will be discussed. The paper will examine the issue from the point of wiew of parents, health care professionals and, most importantly, the child-to-be. It will show how unthoughtfully antenatal screening is performed and how pregnancy is treated almost as a disease just since the emergence of antenatal screening. Genetic screening and ethical problems caused by the procedure will also be addressed and I will suggest that screening is more to do with the interests of others rather than those of the child-to be.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To review the policy and ethical implications of recent research on the molecular genetics of attention deficit hyperactivity disorder (ADHD). Method: MEDLINE and psycINFO database searches were used to identify studies on the genetics of ADHD. The implications of replicated candidate genes are discussed. Results: The findings for most genes have been inconsistent but several studies have implicated the genes in the dopaminergic pathway in the aetiology of ADHD. Conclusions: The current evidence on the genetics of ADHD is insufficient to justify genetic screening tests but it will provide important clues as to the aetiology of ADHD. Genetic information on susceptibility to ADHD has the potential to be abused and to stigmatize individuals. Researchers and clinicians need to be mindful of these issues in interpreting and disseminating the results of genetic studies of ADHD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background The role of applied theatre in engaging both lay and professional publics with debate on health policy and practice is an emergent field. This paper discusses the development, production performance and discussion of ‘Inside View’.1 Objectives The objectives were to produce applied theatre from research findings of a completed study on genetic prenatal screening, exploring the dilemmas for women and health professionals of prenatal genetic screening, and to engage audiences in debate and reflection on the dilemmas of prenatal genetic screening. Methods ‘Inside View’ was developed from a multidisciplinary research study through identification of emergent themes from qualitative interviews, and development of these by the writer, theatre producer and media technologist with input from the researchers. Findings Inside View was performed in London and the Midlands to varied audiences with a panel discussion and evaluation post performance. The audiences were engaged in debate that was relevant to them professionally and personally. Knowledge translation through applied theatre is an effective tool for engaging the public but the impact subsequently is unclear. There are ethical issues of unexpected disclosure during discussion post performance and the process of transforming research findings into applied theatre requires time and trust within the multidisciplinary team as well as adequate resourcing.