902 resultados para Genes related to yeast stresses
Resumo:
The putative eukaryotic translation initiation factor 5A (eIF5A) is an essential protein for cell viability and the only cellular protein known to contain the unusual amino acid residue hypusine. eIF5A has been implicated in translation initiation, cell proliferation, nucleocytoplasmic transport, mRNA decay, and actin polarization, but the precise biological function of this protein is not clear. However, eIF5A was recently shown to be directly involved with the translational machinery. A screen for synthetic lethal mutations was carried out with one of the temperature-sensitive alleles of TIF51A (tif51A-3) to identify factors that functionally interact with eIF5A and revealed the essential gene YPT1. This gene encodes a small GTPase, a member of the rab family involved with secretion, acting in the vesicular trafficking between endoplasmatic reticulum and the Golgi. Thus, the synthetic lethality between TIF51A and YPT1 may reveal the connection between translation and the polarized distribution of membrane components, suggesting that these proteins work together in the cell to guarantee proper protein synthesis and secretion necessary for correct bud formation during G1/ S transition. Future studies will investigate the functional interaction between eIF5A and Ypt1 in order to clarify this involvement of eIF5A with vesicular trafficking. ©FUNPEC-RP.
Resumo:
Multiple ovulation (superovulation) and embryo transfer has been used extensively in cattle. In the past decade, superstimulatory treatment protocols that synchronise follicle growth and ovulation, allowing for improved donor management and fixed-time AI (FTAI), have been developed for zebu (Bos indicus) and European (Bos taurus) breeds of cattle. There is evidence that additional stimulus with LH (through the administration of exogenous LH or equine chorionic gonadotrophin (eCG)) on the last day of the superstimulatory treatment protocol, called the 'P-36 protocol' for FTAI, can increase embryo yield compared with conventional protocols that are based on the detection of oestrus. However, inconsistent results with the use of hormones that stimulate LH receptors (LHR) have prompted further studies on the roles of LH and its receptors in ovulatory capacity (acquisition of LHR in granulosa cells), oocyte competence and embryo quality in superstimulated cattle. Recent experiments have shown that superstimulation with FSH increases mRNA expression of LHR and angiotensin AT(2) receptors in granulosa cells of follicles >8 mm in diameter. In addition, FSH decreases mRNA expression of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in oocytes, but increases the expression of both in cumulus cells, without diminishing the capacity of cumulus-oocyte complexes to generate blastocysts. Although these results indicate that superstimulation with FSH is not detrimental to oocyte competence, supplementary studies are warranted to investigate the effects of superstimulation on embryo quality and viability. In addition, experiments comparing the cellular and/or molecular effects of adding eCG to the P-36 treatment protocol are being conducted to elucidate the effects of superstimulatory protocols on the yield of viable embryos.
Resumo:
This study was performed to compare CAPN1, CAPN2, CAST, TG, DGAT1 and LEP gene expressions and correlate them with meat quality traits in two genetic groups (Nellore and Canchim) in order to assess their expression profile and use their expression profile as genetic markers. We analyzed 30 young bulls (1. year old), 15 of each genetic group. Samples of the Longissimus dorsi muscle were collected for analysis of: total lipids (TL) and meat tenderness measured as Warner-Bratzler shear force (SF) and myofibrillar fragmentation (MFI) at day of slaughter and 7. days of aging. Gene expression profiles were obtained via RT-qPCR. TL and MFI showed differences between breeds, higher MFI in Canchim and higher TL in Nellore. Calpains showed no differential expression between groups, as did DGAT1, TG, and LEP. CAST was expressed more in the Nellore cattle. The only significant within-breed correlation (0.79) between gene expression and meat traits was found for DGAT1 and MFI in Canchim breed. Although the number of animals used in this study was small, the results indicate that the increased expression of CAST in Nellore may reflect tougher meat, but the lack of correlations with the meat traits indicates it is not a promising genetic marker. © 2013 Elsevier Ltd.
Resumo:
Skeletal muscle growth in the pirarucu (Arapaima gigas) is highly interesting to fish farmers because it provides information about how the mechanism in muscle mass increase, characteristic of the species, is regulated. Pirarucu has specific muscle growth that highlights the species's significance and commercial value. Current research evaluates the morphology and the growth-related gene expression in the red and white skeletal muscles of the pirarucu. Muscle samples were collected from the lateral anterior region and frozen in liquid nitrogen. Histological sections were performed and stained by HE for morphological analysis. Red and white muscle samples were used to determine MyoD, myogenin, and myostatin genes expression by Real-time Polymerase Chain Reaction. Although MyoD and myogenin were not statistically different in the two types of muscles, myostatin was significantly higher in the white rather than in the red muscle. Results show the muscle growth characteristics of the species and may be helpful for improving aquaculture management programs.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Abstract Background RNAs transcribed from intronic regions of genes are involved in a number of processes related to post-transcriptional control of gene expression. However, the complement of human genes in which introns are transcribed, and the number of intronic transcriptional units and their tissue expression patterns are not known. Results A survey of mRNA and EST public databases revealed more than 55,000 totally intronic noncoding (TIN) RNAs transcribed from the introns of 74% of all unique RefSeq genes. Guided by this information, we designed an oligoarray platform containing sense and antisense probes for each of 7,135 randomly selected TIN transcripts plus the corresponding protein-coding genes. We identified exonic and intronic tissue-specific expression signatures for human liver, prostate and kidney. The most highly expressed antisense TIN RNAs were transcribed from introns of protein-coding genes significantly enriched (p = 0.002 to 0.022) in the 'Regulation of transcription' Gene Ontology category. RNA polymerase II inhibition resulted in increased expression of a fraction of intronic RNAs in cell cultures, suggesting that other RNA polymerases may be involved in their biosynthesis. Members of a subset of intronic and protein-coding signatures transcribed from the same genomic loci have correlated expression patterns, suggesting that intronic RNAs regulate the abundance or the pattern of exon usage in protein-coding messages. Conclusion We have identified diverse intronic RNA expression patterns, pointing to distinct regulatory roles. This gene-oriented approach, using a combined intron-exon oligoarray, should permit further comparative analysis of intronic transcription under various physiological and pathological conditions, thus advancing current knowledge about the biological functions of these noncoding RNAs.
Resumo:
Streptococcus pneumoniae is the most common pathogen causing non-epidemic bacterial meningitis worldwide. The immune response and inflammatory processes contribute to the pathophysiology. Hence, the anti-inflammatory dexamethasone is advocated as adjuvant treatment although its clinical efficacy remains a question at issue. In experimental models of pneumococcal meningitis, dexamethasone increased neuronal damage in the dentate gyrus. Here, we investigated expressional changes in the hippocampus and cortex at 72 h after infection when dexamethasone was given to infant rats with pneumococcal meningitis. Nursing Wistar rats were intracisternally infected with Streptococcus pneumoniae to induce experimental meningitis or were sham-infected with pyrogen-free saline. Besides antibiotics, animals were either treated with dexamethasone or saline. Expressional changes were assessed by the use of GeneChip® Rat Exon 1.0 ST Arrays and quantitative real-time PCR. Protein levels of brain-derived neurotrophic factor, cytokines and chemokines were evaluated in immunoassays using Luminex xMAP® technology. In infected animals, 213 and 264 genes were significantly regulated by dexamethasone in the hippocampus and cortex respectively. Separately for the cortex and the hippocampus, Gene Ontology analysis identified clusters of biological processes which were assigned to the predefined categories "inflammation", "growth", "apoptosis" and others. Dexamethasone affected the expression of genes and protein levels of chemokines reflecting diminished activation of microglia. Dexamethasone-induced changes of genes related to apoptosis suggest the downregulation of the Akt-survival pathway and the induction of caspase-independent apoptosis. Signalling of pro-neurogenic pathways such as transforming growth factor pathway was reduced by dexamethasone resulting in a lack of pro-survival triggers. The anti-inflammatory properties of dexamethasone were observed on gene and protein level in experimental pneumococcal meningitis. Further dexamethasone-induced expressional changes reflect an increase of pro-apoptotic signals and a decrease of pro-neurogenic processes. The findings may help to identify potential mechanisms leading to apoptosis by dexamethasone in experimental pneumococcal meningitis.
Resumo:
Children who experience early pubertal development have an increased risk of developing cancer (breast, ovarian, and testicular), osteoporosis, insulin resistance, and obesity as adults. Early pubertal development has been associated with depression, aggressiveness, and increased sexual prowess. Possible explanations for the decline in age of pubertal onset include genetics, exposure to environmental toxins, better nutrition, and a reduction in childhood infections. In this study we (1) evaluated the association between 415 single nucleotide polymorphisms (SNPs) from hormonal pathways and early puberty, defined as menarche prior to age 12 in females and Tanner Stage 2 development prior to age 11 in males, and (2) measured endocrine hormone trajectories (estradiol, testosterone, and DHEAS) in relation to age, race, and Tanner Stage in a cohort of children from Project HeartBeat! At the end of the 4-year study, 193 females had onset of menarche and 121 males had pubertal staging at age 11. African American females had a younger mean age at menarche than Non-Hispanic White females. African American females and males had a lower mean age at each pubertal stage (1-5) than Non-Hispanic White females and males. African American females had higher mean BMI measures at each pubertal stage than Non-Hispanic White females. Of the 415 SNPs evaluated in females, 22 SNPs were associated with early menarche, when adjusted for race ( p<0.05), but none remained significant after adjusting for multiple testing by False Discovery Rate (p<0.00017). In males, 17 SNPs were associated with early pubertal development when adjusted for race (p<0.05), but none remained significant when adjusted for multiple testing (p<0.00017). ^ There were 4955 hormone measurements taken during the 4-year study period from 632 African American and Non-Hispanic White males and females. On average, African American females started and ended the pubertal process at a younger age than Non-Hispanic White females. The mean age of Tanner Stage 2 breast development in African American and Non-Hispanic White females was 9.7 (S.D.=0.8) and 10.2 (S.D.=1.1) years, respectively. There was a significant difference by race in mean age for each pubertal stage, except Tanner Stage 1 for pubic hair development. Both Estradiol and DHEAS levels in females varied significantly with age, but not by race. Estradiol and DHEAS levels increased from Tanner Stage 1 to Tanner Stage 5.^ African American males had a lower mean age at each Tanner Stage of development than Non-Hispanic White males. The mean age of Tanner Stage 2 genital development in African American and Non-Hispanic White males was 10.5 (S.D.=1.1) and 10.8 (S.D.=1.1) years, respectively, but this difference was not significant (p=0.11). Testosterone levels varied significantly with age and race. Non-Hispanic White males had higher levels of testosterone than African American males from Tanner Stage 1-4. Testosterone levels increased for both races from Tanner Stage 1 to Tanner Stage 5. Testosterone levels had the steepest increase from ages 11-15 for both races. DHEAS levels in males varied significantly with age, but not by race. DHEAS levels had the steepest increase from ages 14-17. ^ In conclusion, African American males and females experience pubertal onset at a younger age than Non-Hispanic White males and females, but in this study, we could not find a specific gene that explained the observed variation in age of pubertal onset. Future studies with larger study populations may provide a better understanding of the contribution of genes in early pubertal onset.^
Resumo:
Pax proteins are a family of transcription factors with a highly conserved paired domain; many members also contain a paired-type homeodomain and/or an octapeptide. Nine mammalian Pax genes are known and classified into four subgroups: Pax-1/9, Pax-2/5/8, Pax-3/7, and Pax-4/6. Most of these genes are involved in nervous system development. In particular, Pax-6 is a key regulator that controls eye development in vertebrates and Drosophila. Although the Pax-4/6 subgroup seems to be more closely related to Pax-2/5/8 than to Pax-3/7 or Pax-1/9, its evolutionary origin is unknown. We therefore searched for a Pax-6 homolog and related genes in Cnidaria, which is the lowest phylum of animals that possess a nervous system and eyes. A sea nettle (a jellyfish) genomic library was constructed and two pax genes (Pax-A and -B) were isolated and partially sequenced. Surprisingly, unlike most known Pax genes, the paired box in these two genes contains no intron. In addition, the complete cDNA sequences of hydra Pax-A and -B were obtained. Hydra Pax-B contains both the homeodomain and the octapeptide, whereas hydra Pax-A contains neither. DNA binding assays showed that sea nettle Pax-A and -B and hydra Pax-A paired domains bound to a Pax-5/6 site and a Pax-5 site, although hydra Pax-B paired domain bound neither. An alignment of all available paired domain sequences revealed two highly conserved regions, which cover the DNA binding contact positions. Phylogenetic analysis showed that Pax-A and especially Pax-B were more closely related to Pax-2/5/8 and Pax-4/6 than to Pax-1/9 or Pax-3/7 and that the Pax genes can be classified into two supergroups: Pax-A/Pax-B/Pax-2/5/8/4/6 and Pax-1/9/3/7. From this analysis and the gene structure, we propose that modern Pax-4/6 and Pax-2/5/8 genes evolved from an ancestral gene similar to cnidarian Pax-B, having both the homeodomain and the octapeptide.
Resumo:
The SWI/SNF family of chromatin-remodeling complexes facilitates gene expression by helping transcription factors gain access to their targets in chromatin. SWI/SNF and Rsc are distinctive members of this family from yeast. They have similar protein components and catalytic activities but differ in biological function. Rsc is required for cell cycle progression through mitosis, whereas SWI/SNF is not. Human complexes of this family have also been identified, which have often been considered related to yeast SWI/SNF. However, all human subunits identified to date are equally similar to components of both SWI/SNF and Rsc, leaving open the possibility that some or all of the human complexes are rather related to Rsc. Here, we present evidence that the previously identified human SWI/SNF-B complex is indeed of the Rsc type. It contains six components conserved in both Rsc and SWI/SNF. Importantly, it has a unique subunit, BAF180, that harbors a distinctive set of structural motifs characteristic of three components of Rsc. Of the two mammalian ATPases known to be related to those in the yeast complexes, human SWI/SNF-B contains only the homolog that functions like Rsc during cell growth. Immunofluorescence studies with a BAF180 antibody revealed that SWI/SNF-B localizes at the kinetochores of chromosomes during mitosis. Our data suggest that SWI/SNF-B and Rsc represent a novel subfamily of chromatin-remodeling complexes conserved from yeast to human, and could participate in cell division at kinetochores of mitotic chromosomes.
Resumo:
Human neurodegenerative diseases, such as Parkinson’s disease (PD) and the neuromuscular disorders called dystroglycanopathies (DGPs), cause retinal impairments. We have used RNA-Seq technology to catalog all known genes linked to PD and DGPs expressed in the human retina and quantitate their mRNA levels in terms of FPKM. We have also characterized their expression profiles in the retina by determining their exonic, intronic and exon-intron junction expression levels, as well as the alternative splicing pattern of particular genes. We believe these data could pave the way toward understanding the molecular bases of sight deficiencies associated with neurodegenerative disorders.
Resumo:
Understanding of seed ageing, which leads to viability loss during storage, is vital for ex situ plant conservation and agriculture alike. Yet the potential for regulation at the transcriptional level has not been fully investigated. Here, we studied the relationship between seed viability, gene expression and glutathione redox status during artificial ageing of pea (Pisum sativum) seeds. Transcriptome-wide analysis using microarrays was complemented with qRT-PCR analysis of selected genes and a multilevel analysis of the antioxidant glutathione. Partial degradation of DNA and RNA occurred from the onset of artificial ageing at 60% RH and 50 degrees C, and transcriptome profiling showed that the expression of genes associated with programmed cell death, oxidative stress and protein ubiquitination were altered prior to any sign of viability loss. After 25 days of ageing viability started to decline in conjunction with progressively oxidising cellular conditions, as indicated by a shift of the glutathione redox state towards more positive values (>-190 mV). The unravelling of the molecular basis of seed ageing revealed that transcriptome reprogramming is a key component of the ageing process, which influences the progression of programmed cell death and decline in antioxidant capacity that ultimately lead to seed viability loss.
Resumo:
Dear Editor, Phytohormones are essential regulators of plant development, but their role in the signaling processes between plants and fungi during arbuscular mycorrhizal (AM) establishment is far from being understood (Ludwig-Müller, 2010). AM colonization leads to extensive effects on host metabolism, as revealed by transcriptome studies of AM plants (Hogekamp et al., 2011). Some genes have been specified as an AM core set, since they are mycorrhizal-responsive, irrespective of the identity of the plant, of the fungus, and of the investigated organ. These data support the idea that, on colonization, plants activate a wide reprogramming of their major regulatory networks and argue that mobile factors of fungal or plant origin are involved in such generalized metabolic changes. In this context, hormones may be good candidates (Bonfante and Genre, 2010). However, the emerging picture of the interaction between phytohormones and AMs is very patchy, and information on gibberellin (GA) involvement is still more limited (García-Garrido et al., 2010). The role of GA during nodulation is instead known to control the nodulation signaling pathway (Ferguson et al., 2011).
Resumo:
The identification and validation of candidate genes related to traits of interest is a time consuming and expensive process and the homology among genes from different species can facilitate the identification of genes of the target species from the genomic information of a model species. This study aimed to quantify the expression of homologous rice genes previously related to drought tolerance in Arabidopsis. Five genes (CPK6, PLDa, GluR2, CesA8, and EIN2) were identified in rice by the homology of the amino acid sequence between rice and Arabidopsis. The genotypes Douradão (drought tolerant) and Primavera (drought susceptible) were subjected to a water deficit experiment, and subsequently evaluated for gene expression by qPCR for the five homologous and Lsi1 genes. The qPCR analysis clearly showed that the five homologous genes were expressed in rice, which is an indication that these genes could preserve their function in rice as a response to drought. In Douradão, of the five homologous genes, all but OsGluR2 displayed an increase in the average expression in drought treatment when compared to the control, while in Primavera, the average expression of the five genes did not differ between the control and drought treatment. In Douradão, the OsPLDa1, which showed the higher expression level in drought in relation to the control (10.82), significantly increased the gene expression in the leaf and root tissues as a response to drought, in both vegetative and reproductive stages, whereas in Primavera, this gene was suppressed in both tissues and stages under drought. Therefore, the OsPLDa1 gene was the most important in relation to drought response and is an interesting candidate for further studies in developing rice cultivars that are more tolerant to this stress.