931 resultados para Generalized inverse
Resumo:
A regularization method based on the non-extensive maximum entropy principle is devised. Special emphasis is given to the q=1/2 case. We show that, when the residual principle is considered as constraint, the q=1/2 generalized distribution of Tsallis yields a regularized solution for bad-conditioned problems. The so devised regularized distribution is endowed with a component which corresponds to the well known regularized solution of Tikhonov (1977).
Resumo:
We study inverse problems in neural field theory, i.e., the construction of synaptic weight kernels yielding a prescribed neural field dynamics. We address the issues of existence, uniqueness, and stability of solutions to the inverse problem for the Amari neural field equation as a special case, and prove that these problems are generally ill-posed. In order to construct solutions to the inverse problem, we first recast the Amari equation into a linear perceptron equation in an infinite-dimensional Banach or Hilbert space. In a second step, we construct sets of biorthogonal function systems allowing the approximation of synaptic weight kernels by a generalized Hebbian learning rule. Numerically, this construction is implemented by the Moore–Penrose pseudoinverse method. We demonstrate the instability of these solutions and use the Tikhonov regularization method for stabilization and to prevent numerical overfitting. We illustrate the stable construction of kernels by means of three instructive examples.
Resumo:
We study the scaling properties and Kraichnan–Leith–Batchelor (KLB) theory of forced inverse cascades in generalized two-dimensional (2D) fluids (α-turbulence models) simulated at resolution 8192x8192. We consider α=1 (surface quasigeostrophic flow), α=2 (2D Euler flow) and α=3. The forcing scale is well resolved, a direct cascade is present and there is no large-scale dissipation. Coherent vortices spanning a range of sizes, most larger than the forcing scale, are present for both α=1 and α=2. The active scalar field for α=3 contains comparatively few and small vortices. The energy spectral slopes in the inverse cascade are steeper than the KLB prediction −(7−α)/3 in all three systems. Since we stop the simulations well before the cascades have reached the domain scale, vortex formation and spectral steepening are not due to condensation effects; nor are they caused by large-scale dissipation, which is absent. One- and two-point p.d.f.s, hyperflatness factors and structure functions indicate that the inverse cascades are intermittent and non-Gaussian over much of the inertial range for α=1 and α=2, while the α=3 inverse cascade is much closer to Gaussian and non-intermittent. For α=3 the steep spectrum is close to that associated with enstrophy equipartition. Continuous wavelet analysis shows approximate KLB scaling ℰ(k)∝k−2 (α=1) and ℰ(k)∝k−5/3 (α=2) in the interstitial regions between the coherent vortices. Our results demonstrate that coherent vortex formation (α=1 and α=2) and non-realizability (α=3) cause 2D inverse cascades to deviate from the KLB predictions, but that the flow between the vortices exhibits KLB scaling and non-intermittent statistics for α=1 and α=2.
Resumo:
Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79-88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix `Kw`) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an application to real data.
Resumo:
The generalized Birnbaum-Saunders distribution pertains to a class of lifetime models including both lighter and heavier tailed distributions. This model adapts well to lifetime data, even when outliers exist, and has other good theoretical properties and application perspectives. However, statistical inference tools may not exist in closed form for this model. Hence, simulation and numerical studies are needed, which require a random number generator. Three different ways to generate observations from this model are considered here. These generators are compared by utilizing a goodness-of-fit procedure as well as their effectiveness in predicting the true parameter values by using Monte Carlo simulations. This goodness-of-fit procedure may also be used as an estimation method. The quality of this estimation method is studied here. Finally, through a real data set, the generalized and classical Birnbaum-Saunders models are compared by using this estimation method.
Resumo:
It has been proposed that the ascending dorsal raphe (DR)-serotonergic (5-HT) pathway facilitates conditioned avoidance responses to potential or distal threat, while the DR-periventricular 5-HT pathway inhibits unconditioned flight reactions to proximal danger. Dysfunction on these pathways would be, respectively, related to generalized anxiety (GAD) and panic disorder (PD). To investigate this hypothesis, we microinjected into the rat DR the benzodiazepine inverse receptor agonist FG 7142, the 5-HT1A receptor agonist 8-OH-DPAT or the GABA(A) receptor agonist muscimol. Animals were evaluated in the elevated T-maze (ETM) and light/dark transition test. These models generate defensive responses that have been related to GAD and PD. Experiments were also conducted in the ETM 14 days after the selective lesion of DR serotonergic neurons by 5,7-dihydroxytriptamine (DHT). In all cases, rats were pre-exposed to one of the open arms of the ETM 1 day before testing. The results showed that FG 7142 facilitated inhibitory avoidance, an anxiogenic effect, while impairing one-way escape, an anxiolytic effect. 8-OH-DPAT, muscimol, and 5,7-DHT-induced lesions acted in the opposite direction, impairing inhibitory avoidance while facilitating one-way escape from the open arm. In the light/dark transition, 8-OH-DPAT and muscimol increased the time spent in the lighted compartment, an anxiolytic effect. The data supports the view that distinct DR-5-HT pathways regulate neural mechanisms underlying GAD and PD. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work we define the composite function for a special class of generalized mappings and we study the invertibility for a certain class of generalized functions with real values.
Resumo:
In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144: 13-29, 2005). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion of membranes and extend the definition of integrals, given in Aragona et al. (Monatsh. Math. 144: 13-29, 2005), to integrals defined on membranes. We use this to prove a generalized version of the Cauchy formula and to obtain the Goursat Theorem for generalized holomorphic functions. A number of results from classical differential and integral calculus, like the inverse and implicit function theorems and Green's theorem, are transferred to the generalized setting. Further, we indicate that solution formulas for transport and wave equations with generalized initial data can be obtained as well.
Resumo:
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
Resumo:
We study the power series ring R= K[[x1,x2,x3,...]]on countably infinitely many variables, over a field K, and two particular K-subalgebras of it: the ring S, which is isomorphic to an inverse limit of the polynomial rings in finitely many variables over K, and the ring R', which is the largest graded subalgebra of R. Of particular interest are the homogeneous, finitely generated ideals in R', among them the generic ideals. The definition of S as an inverse limit yields a set of truncation homomorphisms from S to K[x1,...,xn] which restrict to R'. We have that the truncation of a generic I in R' is a generic ideal in K[x1,...,xn]. It is shown in Initial ideals of Truncated Homogeneous Ideals that the initial ideal of such an ideal converge to the initial ideal of the corresponding ideal in R'. This initial ideal need no longer be finitely generated, but it is always locally finitely generated: this is proved in Gröbner Bases in R'. We show in Reverse lexicographic initial ideals of generic ideals are finitely generated that the initial ideal of a generic ideal in R' is finitely generated. This contrast to the lexicographic term order. If I in R' is a homogeneous, locally finitely generated ideal, and if we write the Hilbert series of the truncated algebras K[x1,...,xn] module the truncation of I as qn(t)/(1-t)n, then we show in Generalized Hilbert Numerators that the qn's converge to a power series in t which we call the generalized Hilbert numerator of the algebra R'/I. In Gröbner bases for non-homogeneous ideals in R' we show that the calculations of Gröbner bases and initial ideals in R' can be done also for some non-homogeneous ideals, namely those which have an associated homogeneous ideal which is locally finitely generated. The fact that S is an inverse limit of polynomial rings, which are naturally endowed with the discrete topology, provides S with a topology which makes it into a complete Hausdorff topological ring. The ring R', with the subspace topology, is dense in R, and the latter ring is the Cauchy completion of the former. In Topological properties of R' we show that with respect to this topology, locally finitely generated ideals in R'are closed.
Resumo:
[EN ]The classical optimal (in the Frobenius sense) diagonal preconditioner for large sparse linear systems Ax = b is generalized and improved. The new proposed approximate inverse preconditioner N is based on the minimization of the Frobenius norm of the residual matrix AM − I, where M runs over a certain linear subspace of n × n real matrices, defined by a prescribed sparsity pattern. The number of nonzero entries of the n×n preconditioning matrix N is less than or equal to 2n, and n of them are selected as the optimal positions in each of the n columns of matrix N. All theoretical results are justified in detail…
Resumo:
With the recognition of the importance of evidence-based medicine, there is an emerging need for methods to systematically synthesize available data. Specifically, methods to provide accurate estimates of test characteristics for diagnostic tests are needed to help physicians make better clinical decisions. To provide more flexible approaches for meta-analysis of diagnostic tests, we developed three Bayesian generalized linear models. Two of these models, a bivariate normal and a binomial model, analyzed pairs of sensitivity and specificity values while incorporating the correlation between these two outcome variables. Noninformative independent uniform priors were used for the variance of sensitivity, specificity and correlation. We also applied an inverse Wishart prior to check the sensitivity of the results. The third model was a multinomial model where the test results were modeled as multinomial random variables. All three models can include specific imaging techniques as covariates in order to compare performance. Vague normal priors were assigned to the coefficients of the covariates. The computations were carried out using the 'Bayesian inference using Gibbs sampling' implementation of Markov chain Monte Carlo techniques. We investigated the properties of the three proposed models through extensive simulation studies. We also applied these models to a previously published meta-analysis dataset on cervical cancer as well as to an unpublished melanoma dataset. In general, our findings show that the point estimates of sensitivity and specificity were consistent among Bayesian and frequentist bivariate normal and binomial models. However, in the simulation studies, the estimates of the correlation coefficient from Bayesian bivariate models are not as good as those obtained from frequentist estimation regardless of which prior distribution was used for the covariance matrix. The Bayesian multinomial model consistently underestimated the sensitivity and specificity regardless of the sample size and correlation coefficient. In conclusion, the Bayesian bivariate binomial model provides the most flexible framework for future applications because of its following strengths: (1) it facilitates direct comparison between different tests; (2) it captures the variability in both sensitivity and specificity simultaneously as well as the intercorrelation between the two; and (3) it can be directly applied to sparse data without ad hoc correction. ^
Resumo:
The study of passive scalar transport in a turbulent velocity field leads naturally to the notion of generalized flows, which are families of probability distributions on the space of solutions to the associated ordinary differential equations which no longer satisfy the uniqueness theorem for ordinary differential equations. Two most natural regularizations of this problem, namely the regularization via adding small molecular diffusion and the regularization via smoothing out the velocity field, are considered. White-in-time random velocity fields are used as an example to examine the variety of phenomena that take place when the velocity field is not spatially regular. Three different regimes, characterized by their degrees of compressibility, are isolated in the parameter space. In the regime of intermediate compressibility, the two different regularizations give rise to two different scaling behaviors for the structure functions of the passive scalar. Physically, this means that the scaling depends on Prandtl number. In the other two regimes, the two different regularizations give rise to the same generalized flows even though the sense of convergence can be very different. The “one force, one solution” principle is established for the scalar field in the weakly compressible regime, and for the difference of the scalar in the strongly compressible regime, which is the regime of inverse cascade. Existence and uniqueness of an invariant measure are also proved in these regimes when the transport equation is suitably forced. Finally incomplete self similarity in the sense of Barenblatt and Chorin is established.
Resumo:
Calculating the potentials on the heart’s epicardial surface from the body surface potentials constitutes one form of inverse problems in electrocardiography (ECG). Since these problems are ill-posed, one approach is to use zero-order Tikhonov regularization, where the squared norms of both the residual and the solution are minimized, with a relative weight determined by the regularization parameter. In this paper, we used three different methods to choose the regularization parameter in the inverse solutions of ECG. The three methods include the L-curve, the generalized cross validation (GCV) and the discrepancy principle (DP). Among them, the GCV method has received less attention in solutions to ECG inverse problems than the other methods. Since the DP approach needs knowledge of norm of noises, we used a model function to estimate the noise. The performance of various methods was compared using a concentric sphere model and a real geometry heart-torso model with a distribution of current dipoles placed inside the heart model as the source. Gaussian measurement noises were added to the body surface potentials. The results show that the three methods all produce good inverse solutions with little noise; but, as the noise increases, the DP approach produces better results than the L-curve and GCV methods, particularly in the real geometry model. Both the GCV and L-curve methods perform well in low to medium noise situations.
Resumo:
The dynamics of the non-equilibrium Ising model with parallel updates is investigated using a generalized mean field approximation that incorporates multiple two-site correlations at any two time steps, which can be obtained recursively. The proposed method shows significant improvement in predicting local system properties compared to other mean field approximation techniques, particularly in systems with symmetric interactions. Results are also evaluated against those obtained from Monte Carlo simulations. The method is also employed to obtain parameter values for the kinetic inverse Ising modeling problem, where couplings and local field values of a fully connected spin system are inferred from data. © 2014 IOP Publishing Ltd and SISSA Medialab srl.